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Abstract

Deep learning has achieved great success in solving many tasks in various fields, but this
success is conditional on the availability of a significant amount of data to train on, as well as
the availability of the computing capabilities necessary to obtain good results, while in reality,
there are several problems and areas of nature that have a small amount of data, and here
comes the role of our field of study, Few-Shot learning, which attempts to bridge the gap
between deep learning models and human learning ability from a few examples. In our work,
we try to discover the field of Few-Shot learning, first theoretically, by taking note of its most
important foundations, approaches and methods. Secondly, practically, by training the Siamese
neural network with a small amount of data, so that our model is able to distinguish classes that
were not seen during training, we recorded an important observation, that good discrimination
is not coupled with extensive training and that satisfactory results regarding discrimination
accuracy reach about 84%.

Keywords : Few-Shot Learning, Meta learning, Metric Learning, Transfer learning, Deep
learning, Siamese neural network.
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Résumé

L’apprentissage profond a obtenu un grand succès dans la résolution de nombreuses tâches
dans divers domaines, mais ce succès est conditionné par la disponibilité d’une quantité im-
portante de données sur lesquelles l’entraînement est effectué, ainsi que par la disponibilité des
capacités de calcul nécessaires pour obtenir de bons résultats, alors qu’en réalité, plusieurs prob-
lèmes et domaines de la nature ne disposent que d’une petite quantité de données, et c’est là
qu’intervient le rôle de notre domaine d’étude, l’apprentissage avec peu d’exemples, qui tente de
faire le rapprochement entre les modèles d’apprentissage profond et la capacité d’apprentissage
humaine à partir de quelques exemples. Dans notre travail, nous essayons de découvrir le do-
maine de l’apprentissage avec peu d’exemples, d’abord théoriquement, en prenant note de ses
fondements, ses approches et ses méthodes les plus importantes. Deuxièmement, de manière
pratique, en entraînant le réseau de neurones siamois avec une petite quantité de données,
de sorte que notre modèle soit capable de distinguer des classes qui n’ont pas été vues pen-
dant l’entraînement.Nous avons enregistré une observation importante, à savoir qu’une bonne
discrimination n’est pas associée à un entraînement intensif et que les résultats satisfaisants
concernant l’exactitude de la discrimination atteignent environ 84%.

Mots clés : Apprentissage avec peu d’exemples, Méta apprentissage, Apprentissage métriques,
Apprentissage par transfert, Apprentissage profond, Réseau de neurones siamois.
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ملخص

بتوفر مشروط النجاح هذا ولكن المجالات مختلف في المهام من للعديد الحلول توفير في كبيرا نجاحا حقق العميق التعلم
عدة هناك واقعيا بينما جيدة، نتائج على للحصول اللازمة الحوسبة قدرات توفر وكذلك عليها للتدريب البيانات من معتبرة كمية
من قليل عدد خلال من التعلم دراستنا مجال دور ياتٔي وهنا البيانات من قليلة كمية على تتوفر بطبعها ومجالات مشكلات

قليلة. امٔثلة من البشري التعلم وقدرة العميق التعلم نماذج بين الفجوة سد يحاول والذي البيانات،
ومقارباته اسٔسه باهٔم الاحاطة خلال من نظريا البيانات من قليل عدد خلال من التعلم مجال اكتشاف حاولنا العمل هذا في
نموذجنا يكون بحيث البيانات من قليل عدد باستعمال السيامية العصبية الشبكة تدريب خلال من التطبيقية الناحية ومن وطرائقه
المكثف بالتدريب مقرون غير الجيد التمييز انٔ مهمة ملاحظة سجلنا وقد التدريب خلال يرها لم اصٔناف بين التمييز على قادرًا

بالمئة. 84 لنحو وصلت التمييز دقة بخصوص مرضية ونتائج

الشبكة العميق، التعلم المتنقل، التعلم المتري، التعلم التعلم، ميتا قليلة، بيانات خلال من التعلم : مفتاحية كلمات
السيامية. العصبية
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Introduction

Contents

Modern artificial intelligence has made significant progress in many domains, thanks to
advanced deep learning algorithms, the computing power and availability of large data sets.

As a result of these advances, deep learning models are performing very well in various
fields such as image classification, video games, self-driving cars, natural language processing
and other domains. However, a large quantity of labeled dataset is needed in order to realize
these achievements. On the other hand, humans have a great capacity to learn from a small
number of examples, and not only that, but they also have the ability to generalize this learning
to new problems through what they have previously learned, for example, a child can recognize
an object that he has only seen once or twice. This is what deep learning models can’t do.

In order to bridge the gap between human learning ability and deep learning models, Few-
shot learning (FSL) has been introduced to accomplish this, to solve problems when little or
no data is available or when we lack the computational capabilities to learn, in general to deal
with data scarcity in any field.

Researchers have worked hard on Few-shot learning, which has led to the emergence of many
approaches and techniques, such as: Data augmentation techniques, metric-based techniques,
gradient-based meta-learning techniques and more. Each of these techniques has a specific way
of solving learning problems from few data.

In this work, we explore the study related to Few-shot learning and the most important
ways in which data scarcity was addressed, we also study the generalization through a few
examples using the Siamese neural network.

This document is divided into three chapters as follows:

• Chapter One: We start by talking about deep learning, then we define Few-shot learning
and its variations, the different methods, some basic mathematics used in these methods
and finally the datasets used in Few-shot learning.

• Chapter Two: It is about related work in Few-shot learning, defining the techniques used,
their results and we also mentioned important applications in the field.

• Chapter Three: The experimental part of our work is based on one of the previously
mentioned methods, which is the Siamese neural network, using a little bit of training
data from the Fashion MNIST dataset to study the effect of generalization on classes
that we have not trained on, with different settings such as the number of epochs and the
batch size.
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Chapter 1. Few-Shot Learning Preliminary Concepts

1.1 Deep learning

Deep learning is a branch of machine learning characterized by the presence of a deep neural
network, which can be described as a model with several hidden layers. In order to make
decisions, this model must be trained on a large amount of data, unlike the human brain which
can learn and perceive from only a few examples. Few-shot learning (FSL) is a concept that
consists in building algorithms that can bring this human ability of learning from just a small
amount of data, this is what this work is about.

1.2 What is Few-Shot-Learning ?

FSL generally focuses on the N-way K-shot classification tasks, that is to train the model with
a few labeled examples (K) for N new classes that requires fast model adaptation to new tasks.

Few-shot learning can be categorized into almost four approaches: generative models, fea-
ture or metric learning, data augmentation, and meta-learning [30, 31].

Some references have reduced the number to only three, as follows: Data, Model, Algorithm
[28].

Let’s define an N-way-K-Shot-classification:

1. a support set or training set that composed of :

(1) N class labels.
(2) K labeled few images of each class.

2. a query set composed of Q query images. (see Figure (1.1))

Figure 1.1: Few-Shot Image Classification [31].
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1.3 Few-Shot Learning Variations

In general, researchers are working on three different variation in FSL:

1. Few-Shot Learning (FSL).

2. One-Shot Learning (OSL).

3. Zero-Shot Learning (ZSL).

The only difference between different FSL variations is the value of N, in the case of one-shot
N becomes one and zero for zero-shot learning, where the number of samples to train with is
N, and the number of classes to train on is K.

1.4 Few-Shot Learning challenges

FSL works to solve problems in effective ways, and this is what makes it have advantages, which
are:

• Learning when data is scarce: When we face the problem of data scarcity and cannot
get enough examples, the best solution is to resort to the use of FSL, which has the ability
to address these situations, for example trying to know and discover a new drug and find
out if its components that it contains are toxic or non-toxic.

• Reduce data and processing time: The approach that FSL depends on helps reduce
the size of data in the future, including processing time, especially for images.
It will have an important role in making models more efficient and effective.

• Simulation of the human brain: Learning without the need for much information is
what distinguishes the human mind in this sense.
The same thing was applied to the machine to be closer in the way the human mind
works.

1.5 Few-Shot learning vs standard supervised learning

In this section we mention some of the differences between Supervised learning and FSL.

1. Supervised learning:

• In order to predict new samples, required a lot of experience.
• All data in a dataset has a label.
• Single task learning.

2. Few-shot learning:

• Attempts to predict new samples without much experience.
• Not all data in dataset have a label.
• Meta learning’s goal is learning to learn, learn by himself, learning from a few

experiences.

4
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1.6 Meta-learning

We now begin to explain about Meta-learning, which has shown a lot of progress in FSL, it is
also worth mentioning that there are approaches in FSL that are not based on Meta-learning.

Meta-Learning: or we can call it here (learn to learn) the idea of using this is to acquire
knowledge or inductive biases [5] also learn to optimize deep models [19].

Also it learns from tasks and then adapts to new tasks T as it is in the Figure (1.2), it is
further used to deal with FSL problems and it is taken as prior knowledge in order to guide
each specific task of the FSL [28].

Figure 1.2: General framework of meta learning [19].

Meta-Learning can also be relied upon for several reasons, such as:

• Adapt and learn from new tasks quickly.

• Ability to build generalizable systems.

In the following table 1.1, we put some symbols and their appropriate description in order
to facilitate understanding of the equations.

Table 1.1: Equation Terms.

Notation Description
Dtrain Training set
Dtrain

i Training set for task Ti
Dtest Test set
Dtest

i Test set for task Ti
Ti Task i
L loss function
fθ Function (model) with parameters θ

gϕ Meta-Learning model with parameters ϕ

α Learning rate
θ Parameters
θ∗ Optimal parameters

5
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Meta-learning is based on the approximation of the f function with the parameters θ as
in the following equation (1.1):

y ≈ f
(
Dtrain

i , x; θ
)

, where (x, y) ∈ Dtest
i (1.1)

so its goal is to make the performance of any task ti randomly with a perfect distribution
of tasks p(T).

1.6.1 Optimization-based Meta-Learning

This method explains how the training data, which is limited, can be improved while ensuring
an acceptable generalization performance, by taking advantage of the meta-learning structure
and its algorithms, all of which allows improvement on the work of limited training examples
[22].

Optimization-based approaches go through two phases:

• Learner: The learner model fθ is a specific task and trained on a specific task, but this
few-shot task does not generalize if the learned model trains from scratch using gradient
descent.

• Meta-Learner: Works during task assignment training T ≈ p(T) as the meta-learner
learns (ϕ) to update the parameters of the learner model (θ) through the training set
Dtrain.

θ∗ = gϕ

(
θ,Dtrain )

(1.2)

The meta-learner tries to produce the updated learner model parameters θ∗ provided they
are better than θ.

The process of optimization during the training of the meta learner improves ϕ for the meta
learner and θ for the individual training tasks and upon completion prior knowledge is included
ϕ and then occurs θ for the test task.

a) LSTM Meta-Learner Section(2.3.1): Use the gradient descent of the neural network f to
update its parameters θ and the goal of all this is to try to train f (θ) on the data Dtrain. (1.3)

θi+1 = θi − α∇ f (θi) (1.3)

Work with the function g(ϕ) that acts as an enhancer instead of SGD and we do not have
to fix the learning rate α.

θi+1 = θi + gi (∇ f (θi) ; ϕ) (1.4)

6
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The equation (1.4) shows not using SGD and therefore to dispense with α and use g(ϕ).
The g(ϕ) meta learner is also modeled as an LSTM in order to suggest parameters for the
f learner Figure(2.3).

θi+1 = gi (∇ f (θi) , θi; ϕ) (1.5)

b) Model-Agnostic Meta-Learning (MAML) Section(2.3.2): It aims to have good θ pa-
rameters and this makes the optimization faster in the next steps from the computed gradient
descent and from small data, through the assignment of tasks p(T) these parameters θ are
learned.
Compared with the LSTM meta-learner, MAML has one model with parameters θ. It
also seeks to reach the optimal parameters θ∗ during the proposed task.
We have the function f with the parameter θ when adapting a new task Ti becomes θ′i
In calculating in order to update the parameters θ′i equation (1.6) we use more than once
gradient descent updates on task Ti (sometimes once is enough)[9].

θ′i = θ − α∇θLTi ( fθ) (1.6)

The model parameters are trained by optimizing for the performance of fθ′i
with respect to

θ across tasks sampled from p(T), the meta-objective is in following equation (1.7):

min
θ

∑
Ti∼p(T )

LTi

(
fθ′i

)
= ∑
Ti∼p(T )

LTi

(
fθ−α∇θLTi ( fθ)

)
(1.7)

The loss function L helps to learn from the training data and to measure how well the model
works. Therefore, in the above-mentioned equation (1.7), the min function was proposed
in order to reduce the value of the loss function L with respect to θ across tasks sampled
from.

1.6.2 Metric-based Meta-Learning

Metric learning its purpose is to determine the similarity or dissimilarity between data sam-
ples based on a distance metric as Euclidean distance (1.8):

√
n

∑
i=1

(xi − yi)2 (1.8)

The properties of a distance metric are :

(a) Non-negativity: d(x, y) ≥ 0,

7
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(b) Identity of Non-discernibles: d(x, y) = 0 if and only if x = y,

(c) Symmetry: d(x, y) = d(y, x), and

(d) Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

Metric learning is the key idea behind nearest neighbors algorithms (k-NN), Therefore before
the calculation process we use an embedding function f to find the embedding vectors.

in the case of Few-shot learning, metric-based techniques combine good characteristics be-
tween parametric models and nonparametric with the contribution of Meta-Learning to fast
adaptability of new tasks.

These methods are divided according to this reference [17] into three groups :

• learning class representations represented by Prototypical Network.

• learning distance by Relation Network.

• learning feature embeddings for Siamese Network and Matching Network.

Figure 1.3: Example of Metric-based technique [16].

1.7 Pre-training and Transfer learning

Transfer learning takes advantage of previous models to get more efficient, it adapts to
training new models related to the previous model, and it works well with small data and
improves with pre-training.

In the field of pre-training images, studies have shown that an increase in the size of data
has the benefits of transfers in performance [7].

The Figure(1.4) shows the training stage, starting from a base class data and ending with
the predictive function [4].

fθ is a feature extractor.
C (· |Wb) is a classifier, with parameters θ, which is a network parameter.
Whereas the classifier is parameterized by matrix weights (Wb ∈ RdXc).
Using xi ∈ Xb the classifier works to minimizing cross-entropy classification loss from the

beginning using training examples from the base classes.

8
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We refer to the letter d as the dimension of the encoded feature, and the letter c is the
number of output classes.

The classifier consists of a linear layer W⊤b fθ (xi) in addition to the SOFTMAX 1 function.

Figure 1.4: Training stage [4].

Extensive pre-training is done on the large dataset and then fine-tuned to the target
data [3], pre-training and fine-tuning had similar steps.

1.8 Fine-tuning for Few-Shot learning

A strong foundation for FSL is the fine tuning especially used on the cross-entropy loss function
equation (1.9), because is a strong baseline for FSL [8].

θ̂ = arg min
θ

1
Nm

∑
(x,y)∈Dm

− log pθ(y | x) + R(θ) (1.9)

The model follows the standard transfer learning procedure for fine-tuning and network pre-
training.

During the fine-tuning phase to configure the model in order to identify new classes, fθ

which is the feature extractor, we fix the network parameters θ and train a new classifier
C (· |Wb).

And by using a few examples labeled in new classes Xn Figure(1.5) we reduce the output
function [4].

Figure 1.5: Fine-tuning stage [4].

1(https://proceedings.neurips.cc/paper/1989/file/0336dcbab05b9d5ad24f4333c7658a0e-Paper.pdf)
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1.9 Datasets used for Few-Shot learning

In this section, we explain the different types of datasets used in the field, and we start with:

1.9.1 Omniglot

Omniglot 2 is one of the most widely used dataset and it is small. It is a handwritten dataset
that is very similar to MNIST Handwritten3. MNIST has 10 classes, each class has 6000
samples, but Omniglot has 1000 classes, each class has only 20 samples as in the Figure (1.6).
This makes classification difficult in Omniglot compared to MNIST.

Omniglot contains alphabets for 50 languages, and this makes the total of letters for all
languages in this dataset is 1623 letters, and each letter in a specific language is repeated 20
times in different handwritings, and the sample of one letter is an image with a scale of 105 X
105 pixels.

A training set is an alphabet of 30 languages, and this makes the number of training letters
964 (class). The evaluation set contains the alphabet for 20 languages, with a total number of
letters up to 659 characters are the classes/labels [12].

Figure 1.6: Omniglot Dataset.

1.9.2 Mini-ImageNet

Mini-ImageNet4. contains 100 classes, each class contains 600 samples with a total of 60
thousand colored images of size 84 × 84, and it is a small version of ImageNet.

a) ImageNet is the most famous and largest data set for classifying images. It has more than
20 thousand classes with a total of more than 14 million colored images.

2(https://github.com/brendenlake/omniglot
https://www.tensorflow.org/datasets/catalog/omniglot)

3(https://www.tensorflow.org/datasets/catalog/mnist)
4(https://github.com/yaoyao-liu/mini-imagenet-tools#about-mini-ImageNet)
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b) Mini-ImageNet was proposed in order to reduce the size and allow models to be trained
for experiments [12].

1.9.3 Fewshot-CIFAR

Fewshot-CIFAR or FC-CIFAR it is a dataset based on CIFAR5, and it is like a Mini-
ImageNet that has been reduced for experiments.

It is also considered faster than a Mini-ImageNet because of the reduction in the size of
the image, this dataset contains 60 thousand color images, size 32 x 32 per image, it differs in
the division of classes according to the type of dataset Fewshot-CIFAR10 contains 10 classes
and Fewshot-CIFAR100 contains 100 classes [21].

1.9.4 CUB-200-2011

This dataset is specific to the characteristics of birds and includes more than 11 thousand
images, and these images are colored for 200 species of birds [27], each image contains labeled
attributes [12].

We have mentioned these types of datasets because they are the most famous in this field,
although there are many datasets that we did not mention, and all of them have their own
advantages and uses.

1.10 Conclusion

During this chapter, we introduced Few-Shot learning (FSL), variations of FSL like Zero-shot
and One-shot, and explained the difference between FSL vs standard supervised learning.

Then we introduced Meta Learning and put some mathematical concepts that it works with,
and we explaining the Metric-based Meta-Learning and the definition of distance metric.

We also defined Pre-training and Transfer learning and their work. We added the definition
of Fine-tuning for FSL, and finally we defined the most famous FSL dataset.

In the next chapter, we explain the methods adopted in each approach, the way they work,
and the results achieved.

5(https://www.cs.toronto.edu/~kriz/cifar.html)
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2.1 Introduction

In FSL, there are many approaches and techniques, we discuss the most popular ones as: data
or data augmentation techniques, gradient-based meta-learning techniques and metric-
based techniques, which will be explained below:

2.2 Data augmentation Techniques

Before starting to explain what data augmentation is, we start with a definition of augmen-
tation: it is a way to increase the number of training samples, for example when we talk
about the compute vision domain the basic of augmentation has several operations, including:
translation, adding noise into images, rotating, flipping, cropping [19], zooming and changing
the brightness level.

These are some suggested augmentation that work on custom networks and models to
generate more samples from the few existing ones.

The aim of all this is to improve the quality of dataset, especially for new uses in practical
life in the medical field. Data augmentation can improve the performance of models and
expand limited datasets to take advantage of the capabilities of big data.

Although increasing data is a good thing to solve few data problems, but it also has some
limitations, for example, if your current data distribution is unequal, it will increase the data
distribution to be unequal as well, there is also a high chance of over-fitting as the data
augmentation.

2.2.1 Squared gradient magnitude loss (SGM)

This method generates new data for data augmentation for a few shot classes with a new loss
function. The goal of SGM loss is to have a good feature extractor so as to enable effective
classifiers to learn from a few examples. It is also one of its goals to reduce the difference
between trained classifiers [10].

As the Figure (2.1) shows the classifier W in good and bad case.

Figure 2.1: SGM loss [10].
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The table 2.1 shows the result of SGM model in Mini-ImageNet (1.9.2) dataset.

Table 2.1: Accuracy Of SGM Model.

MiniImageNet Dataset 5- Way Accuracy (%)
Model Technique 1-shot 5-shots 10-shots
SGM Data Augmentation 45.1 72.7 79.1

2.2.2 Image Deformation Meta-Networks (IDeMe-Net)

This method works well on One-shot learning, but it also works with FSL, and it depends on
two modules [6]:

• Embedding Sub-network.

• Deformation Sub-network.

Embedding Sub-network: It comprises of a deep convolutional network for the purpose
of feature extraction and a non parametric one-shot classifier, the input is image use a residual
network [11] to produce its feature representation.

Deformation Sub-network: It explores interaction and integration between the gallery
images and the probe images, and combine them to generate distorted composite images.
In this way, the entire meta network is fully trained, the Figure (2.2) show the architecture of
IDeMe-Net.

Figure 2.2: Architecture of image deformation meta-network (IDeMe-Net)[6].

As we note in table 2.2, this method showed its strength in learning from one shot, as it
achieved a 59.14 ± 0.86% of accuracy, which is the highest. As for the FSL it achieved a good
result, but not the best.

Table 2.2: Accuracy Of IDeMe-Net Model.

MiniImageNet Dataset 5- Way Accuracy (%)
Model Technique 1-shot 5-shots 10-shots
IDeMe-Net Data Augmentation 59.14±0.86 74.63±0.74 -
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2.3 Gradient-based Meta-learning Techniques

In Section(1.6), we have defined meta-learning a basic idea and its purpose, in this section, we
explain the most important techniques gradient-based meta-learning and the results achieved.
And we start with:

2.3.1 Meta-Learning LSTM (Long short-term memory)

The success of neural networks in the field of big data proves their worth, but they do not
perform well in the context of a few-shot learning, to improve performance, which requires a
lot of iterative steps on many examples, the meta-learner based on LSTM has been proposed
[23]. (see Figure (2.3))

The reason we switched to this method is that gradient-based optimization fails:
first of which are algorithms like Adam [14], Adagrad and Adadelta. It does not perform

well on updates especially when applied to non-convex optimization problems, and it doesn’t
have very strong guarantees of convergence speed, plus it will eventually converge to a good
solution after what could be several million iterations.

Second for the network that must be randomly initialization for its parameters, which does
not help convergence for good solutions after the update.

Meta-learning adjusts learning to two phases, first the rapid acquisition of knowledge during
each task and second the slow information extraction across all tasks.

In order to solve gradient-based improvement problems, we need to frame this problems in
a meta-learning framework.

Through this, a LSTM-based meta-learner optimizer was trained to improve the learner
neural network classifier, through all the tasks, both short and long-term knowledge is captured.

To perform well during this task, the training conditions must be identical to those at the
time of the test. During the meta-learning assessment, for each episode.

Figure 2.3: LSTM meta-learner model training [23].

The Figure (2.3) represents the front passage of the meta-learner whereas, the dashed line
represents the division between the training set and the test set.

(Xi, Yi) are the i batch of the training set while (X, Y) are all the items from the test set.
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The arrow shows that there is no back-propagate during the steps when we train the meta
learner.

We note in the table (2.3) that through the results achieved, it can be considered that
Meta-Learning LSTM is competitive and respectable.

Table 2.3: Accuracy Of Meta-Learning LSTM Model.

MiniImageNet Dataset 5- Way Accuracy (%)
Model Technique 1-shot 5-shots 10-shots
Meta-Learning LSTM Optimization 43.44 ± 0.77 60.60 ± 0.71 -

2.3.2 Model-Agnostic Meta-Learning (MAML)

This method trains models to quickly adapt to new tasks, and using meta-initialization, it can
be useful for quickly adapting to new tasks, with just a few steps of gradient descent.

MAML does not learn an update function or learning rule, it learns the model parameters
in a fully differentiable way.

Agnostic, in the sense that the method can be used in different contexts, and few shot
learning is a particular case.

MAML seeks to quickly learn a new task from a small amount of new data. The idea is
to train the initial parameters of the models using a different data set by giving the model
parameters that have already been configured so that the model gives maximum performance
when a new task comes.

The goal of MAML is to provide a good initialization of model parameters in order to
achieve rapid optimization in a new task with less number of gradient steps [13].

As we can see in the Figure (2.4) parameters θ chooses the best initialization that can
quickly adapt to new tasks.

Figure 2.4: Algorithm Of Model Agnostic Meta Learning (MAML), θ represent quickly adapt
to new tasks [13].

The table (2.4) shows the accuracy results of MAML, and as we note that there is an
improvement in accuracy compared to the previous method (2.3.1), but this method is still not
sufficient to provide better performance.
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Table 2.4: Accuracy Of Model-Agnostic Meta-Learning (MAML).

MiniImageNet Dataset 5- Way Accuracy (%)
Model Technique 1-shot 5-shots 10-shots
MAML Optimization 48.7 ± 1.84 63.00 ± 0.92 -

2.3.3 Model-Agnostic Meta-Learning ++ (MAML++)

MAML is strong, but it suffers from some problems such as instability during training, due
to the sensitivity of the structures of neural networks, and also suffers from computational
problems during the training period.

This is why MAML++ has been proposed, which improves computational speed during
training and system stability.

MAML++ which is as flexible as automatic stability and training, it is an improvement of
MAML. MAML++ greatly improves computational efficiency during training [1]. In one shot
already surpasses all other methods, while additional steps allow for better performance.

Table 2.5: Accuracy Of Model-Agnostic Meta-Learning++ (MAML++).

MiniImageNet Dataset 5- Way Accuracy (%)
Model Technique 1-shot 5-shots 10-shots
MAML++ Optimization 52.15+−0.26 68.32+−0.44 -

The results of the table (2.5) show that the improvement over the previous method (2.3.2)
was beneficial, as it achieved good accuracy over all other methods mentioned in this section
(2.3).

2.3.4 Reptile

Reptile is a first-order gradient-based meta-learning algorithm. Also initializes parameters of
neural network models where learning is rapid during testing and this is due to optimization
of these parameters [20].

In the results obtained in this table (2.6), we note that the results are very close to MAML,
this is because it only uses first-order gradient information such as first-order MAML.

Table 2.6: Accuracy Of Reptile.

MiniImageNet Dataset 5- Way Accuracy (%)
Model Technique 1-shot 5-shots 10-shots
Reptile Optimization 47.07 ± 0.26 62.74 ± 0.37 -

2.3.5 Meta-SGD

Meta-SGD has the ability to learn from learning rate and update direction. Also is characterized
by rapid learning and has the ability to learn effectively from examples in one step [18].

The Figure (2.5) show two-level learning process of Meta-SGD.
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Figure 2.5: Process of Meta-SGD, meta space (θ, α) that learns the meta-learner accelerated
learning is performed by the meta-learner in a learner space θ in which learners learn with a
specific task [18].

The following table (2.7) shows the results obtained with Meta-SGD model, as we note, it
achieved acceptable results.

Table 2.7: Accuracy Of Meta-SGD.

MiniImageNet Dataset 5- Way Accuracy (%)
Model Technique 1-shot 5-shots 10-shots
Meta-SGD Optimization 50.47 ± 1.87 64.03 ± 0.94 -

2.4 Metric-Based Techniques

In this section, we present the most techniques ways to treat Metric-Based approach, these
methods are mainly based on comparison or we can say learn to compare, it learns by embedding
the samples to find the nearest by computing their similarity measures.

2.4.1 Siamese Neural Networks

Siamese Networks [2] are two twin networks with shared wights introduced the first time to
solve the signature verification problem. Siamese networks as a one-shot image classification
purpose done by [15]. The idea behind it, is to extract feature vectors from each image using
two or more siamese convolutional neural network, and then, we calculate the similarity mostly
with cosine similarity or euclidean distance on which loss function to train with as Contrastive
loss function (2.1) or Triplet loss function.

Contrastive loss = (1−Y) (D)2 + (Y) {max (0, m− D)}2 (2.1)
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Were D is the Euclidean distance between feature vectors and m is the margin.

Figure 2.6: A simple Siamese Neural Networks for binary classification [15].

Table 2.8: Accuracy Of Siamese Neural Networks.

Omniglot Dataset 20- Way Accuracy (%)
Model Technique 1-shot 5-shots 10-shots
Siamese network Metric-Based 92 - -

2.4.2 Matching Networks

Matching Network [26] learns by matching the embeddings of support set and query that
sequenced via a bidirectional Long-Short Term Memory (LSTM), and then we calculate the
similarity between them using the Softmax classifier. (see Figure 2.7)

It’s done by mapping each S where a tinny support set is defined as S = {xi, yi}k
i=1 using

cS classifier as below (2.2):

cS(x) = P(y|x, S) =
k

∑
i=1

a(x, xi)yi (2.2)

• a(x, xi) (2.3) is an attention mechanism, similar to non-parametric models like k-NN, the
simplest form it use the Softmax through the cosine distance.

a(x, xi) =
exp(cosine( f (x), g(xi))

∑k
j=1 exp(cosine( f (x), g(xj))

(2.3)
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• The embedding function can be a CNN for image tasks or word embedding for NLP.

Figure 2.7: Matching Networks architecture [26].

Table 2.9: Accuracy Of Matching Network.

MiniImageNet Dataset 5- Way Accuracy (%)
Model Technique 1-shot 5-shots 10-shots
Matching Network Metric-Based 43.56±0.84 55.31±0.73 -

2.4.3 Prototypical Networks

Prototypical Networks [24] it learns by calculating the prototype of each support set class
c ∈ C which is the mean of embedding samples vectors, those embedding samples encoded
using function fθ, in the case of pictures, it’s usually used as CNN. Then it computes the
distance between the embedded query and the prototype of each class, the query belongs to
the closest one. (see Figure 2.8)

ck =
1
|Sk| ∑

(xi,yi)∈Sk

fθ(xi) (2.4)

Prototypical networks use the Softmax activation function, which calculates the probabilities
between the distance of each class prototype over the query point x:

Pϕ(y = c|x) = softmax(−d( fϕ(x), ck)) =
exp(−d( fϕ(x), ck))

∑k′ exp(−d( fϕ(x), ck′))
(2.5)
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Prototypical networks learn by reducing the negative log-probability:

L(ϕ) = − log Pϕ(y = c|x) (2.6)

Figure 2.8: Prototypical Networks [24].

Table 2.10: Accuracy Of Prototypical Networks.

MiniImageNet Dataset 5- Way Accuracy (%)
Model Technique 1-shot 5-shots 10-shots
Prototypical Net Metric-Based 49.42±0.78 68.20±0.66 -

2.4.4 Relation Network

Relation Network [25] it basically consists of two parts of embedding functions, the first f (φ)
for embedding each of the the query xj and the support set xi samples separately, then they
are grouped together as a concatenation of feature, here comes the role of the second function
relation module g(ϕ), which gives us the similarity ratio between the query and the support
set in a limited range between 0-1 called relation score. (see Figure 2.9)

Objective function: mean square error (MSE) loss used to train the model to find the real
corresponding relation score ri,j.

ϕ, φ← argmin
ϕ,φ

m

∑
i=1

n

∑
j=1

(ri,j − 1(yi == yj))
2 (2.7)
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Figure 2.9: Relation Network [25].

Table 2.11: Accuracy Of Relation Network.

MiniImageNet Dataset 5- Way Accuracy (%)
Model Technique 1-shot 5-shots 10-shots
Relation Network Metric-Based 50.44±0.82 65.32±0.70 -

2.5 Application

2.5.1 Computer Vision

Computer vision is one of the applications that has received great interest in the field of few-
shot learning, that’s why we mention many of applications related to starting from character
recognition to image classification, image segmentation, texture segmentation, medical image
segmentation, object detection, object recognition, image generation, image retrieval, video
classification, gesture recognition, action recognition and video generation.

2.5.2 Natural Language Processing

Interest in this field has become a fertile and new field of research to be treated by few-shot
learning, for example: text classification, named entity recognition, machine translation and
natural language generation.

2.5.3 Robotics

In order for a robot to simulate a human, it needs to learn through a few examples, as imitation
learning, visual navigation, policy learning and robot manipulation.
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2.5.4 Speech Recognition

Although the applications of this field are few in FSL, but they exist such as: audio classification,
text-to-speech, speech generation and speaker recognition.

2.6 Conclusion

In this chapter, we presented the most common methods in the field of FSL as well as its applica-
tions, and we also showed each method how accuracy it reached, with a focus on MiniImageNet
dataset because it poses a challenge and is considered a good evaluation of the method, as the
case the results achieved and the accuracy of the methods are different due to the approach
taken such as Data augmentation techniques, Gradient-based Meta-learning techniques and
Metric-Based techniques.
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3.1 Introduction

This chapter is devoted to the purpose of presenting and discussing our experiments, we have
adopted a metrics-based approach which is the Siamese network as a model architecture
mentioned in the section (2.4.1) with the use of less data from MNIST-FASHION data set
(Section 3.3), even studying the changes in generalization by changing some settings. Then we
discuss the results obtained, the environment that we worked on, and the tools used during
these experiments.

3.2 Experimentation roadmap

The goal of our experiments is to generalize through a few examples, then experiment on classes
that the model did not see during the training period, we also observe and evaluate the results
obtained and present them, then we verify the validity of the results.
We took the following steps to reach the goal:

1. Choosing a data set that is not widely used in the field and we have chosen MNIST-
FASHION for this purpose.

2. Choose to download the dataset in the form of CSV, so that we can divide it according to
the purpose. Another reason is that the images are small, so the model can train quickly.

3. Divide the data set into three parts in order to notice whether there is a generalization
or not.

4. We reduced the size of the training data set to about 1,600 samples out of 60,000 to
achieve the goal behind Few-Shot learning.

5. Concerning the training of the model, we have adopted a metrics-based approach which
is the Siamese network as a model architecture with the use of Contrastive Loss Function,
because it gives good results for solving generalization problems through a few examples.

6. Dividing the new dataset into pairs, so that the similar pair (those belonging to the same
class) is labeled by one (1), and zero (0) in the case of a dissimilar pair (not belonging to
the same class).

7. By training the model in our own way, we found that it gives good results, this is because
of an initial pre-training with five attempts before starting the actual training.

8. We changed the training settings, especially the number of epochs and batch size to see
its impact on the generalization.

9. Test the model to verify that there is no problem with overfitting and underfitting.

10. Testing the model on the evaluation set classes that it did not see before during training,
with recording and noting the change of this result according to the epochs and batch
settings.

11. We recorded some observations and presented the result of the model from predictions
on the evaluation set.

12. At the end of the experiment, we came out with an important conclusion, which is the
generalization is not related to the intensive training of the model.
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3.3 Dataset

MNIST-FASHION [29] is a Zalando article picture data set that consists of 60,000 images
for training and 10,000 for testing, all images are grayscale in size of 28x28, and each picture
has one of the ten categories.
We chose to work on this data set because it is not widely used in the field, especially with
Siamese Network. The data set has been downloaded through the link: https://www.kaggle.
com/datasets/zalando-research/fashionmnist in CSV format.
We did not leave the data set as it is, but we did a preprocessing process of deleting two of
the classes from the training set and the test set which are precisely the labels 8 represented
by bag and 9 by Ankle boot, while the size of the training data set was reduced to about 200
for each class.

We also divided the data set into pairs, in order to be able to train the Siamese Network,
the similar pair is categorized by one and the dissimilar pair is categorized by zero. Accordingly,
we created a new set from that two classes called evaluation set they were cut off from the
original test set (contains 2000 examples), for the purpose to testing the model until we make
sure that is generalizing or not. Because the problem is not classification or measure the
similarity, but generalization on classes that we have not trained on with only few examples.

Figure 3.1: MINST-FASHION Data set [29].
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3.4 Environment

3.4.1 Software

For the programming process, we used the Python programming language because it provides
frameworks and libraries that facilitate the application process in the field of machine learning
and deep learning, as shown below:

Python 1 As a programming language that facilitates the process of building deep learning
and machine learning models.

Tensorflow 2 is an end-to-end open-source deep learning platform.

Keras 3 is a Python-based deep learning API that runs on a high level of TensorFlow.

Pandas 4 It is a library from Python specialized in the field of data analysis, which is also
used to import and manipulating data in various formats such as CSV.

NumPy 5 is a library from Python of mathematical functions to handle on arrays and matrices.

Matplotlib 6 It is a Python-based library that specializes in data visualization and plotting.

Seaborn 7 It is a Python-based library based on Matplotlib, that provides a modern visual-
ization.

Scikit-Learn 8 It is a Python-based library contains several machine learning algorithms that
are ready to work on and we have used it in order to display the confusion matrix.

3.4.2 Hardware

To implement our experiments, we used the Google Colaboratory 9 platform, which provides
an integrated environment for deep learning, which works through the browser as Jupyter
notebook and provides free GPU for facilitates training process. We used the free settings for
experiments which contain the following resources:

Table 3.1: Google Colab used requirements.

CPU Intel(R) Xeon(R) CPU @ 2.20GHz.
GPU Tesla P100-PCIE-16GB.
DISK 78.19 GB.
RAM 12.68 GB.

We also used Google Drive to store the data set to facilitate the importing process by
Colab.

1(https://www.python.org/)
2(https://www.tensorflow.org/)
3(https://keras.io/)
4(https://pandas.pydata.org/)
5(https://numpy.org/)
6(https://matplotlib.org/)
7(https://seaborn.pydata.org/)
8(https://scikit-learn.org/)
9(https://colab.research.google.com/)

27

 https://www.python.org/
https://www.tensorflow.org/
https://keras.io/
https://pandas.pydata.org/
https://numpy.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://scikit-learn.org/
https://colab.research.google.com/


Chapter 3. Experiment

3.5 Architecture

We used a siamese convolutional network architecture, which is a two of identical Convolu-
tional neural network shared the same weights, each CNN’s creates a feature vector from an
image input in our case pairs of similar images and dissimilar images to calculate the Euclid-
ian distance between the two feature vectors in order to get similarity score using the sigmoid
activation, for the purpose of calculating the error we used Contrastive Loss Function which
works in a way to reduce the distance between similar inputs and increase it for dissimilar to
learn to differentiate between them when new inputs come that haven’t seen yet (see Figure
(3.2)).

Figure 3.2: Our Siamese network architecture.

In order to get the feature vector we used a CNN’s architecture which consists of 32
convolutional filters of 5x5 size, the next layer contain 64 of convolutional filters with 3x3 size,
the two layers followed by average polling of 2x2 size and applies ReLU as activation function,
the last layer flattened into a single feature vector which represents the input, the same process
is applied for both of CNN’s twins Figure (3.3).

Figure 3.3: Feature vector CNN’s Encoder.
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3.6 Results and Discussion

3.6.1 Preprocessing

Before we show the results obtained from our experiments, we must clarify that we have made
a new division from the original data set MNIST-FASHION, so that it has become for us
composed of three parts, the first for the train, the second for the test, and the last we called it
evaluation set, to make sure that our model performs the generalization process through Few
examples and do not perform the verification process on the classes seen before. This division
of ours is illustrated as follows:

• Train set of 1600 examples labeled by 0 to 7 (200 samples for each class) from the
original train set (contains 60000 samples) represented in the following categories:

0. T-shirt/top.
1. Trouser.
2. Pullover.
3. Dress.
4. Coat.
5. Sandal.
6. Shirt.
7. Sneaker.

• Test set of 8000 samples labeled from 0 to 7, it was extracted from the original test set.

• Evaluation set consists of 2000 examples labeled by 8 and 9 as bag. and Ankle boot,
this set splitted from the original test set.

We took risks in terms of the number of test set and evaluation set samples to make sure that
our model did the aim.

The aim through our experiments, is to study the effect of number of epochs and batch size
on generalization through the evaluation set. We chose the epoch 100, 50 and 20 as based on
our experiments, because we have tried the epoch 500, where we noticed the stability of the
accuracy at 100 as shown in the following illustrations plots (Figure 3.4).

(a) The model’s loss plot. (b) The model’s accuracy plot.

Figure 3.4: The training and testing accuracy and loss plots using 10 batch.
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3.6.2 Experimental results

We did our experiments on the Siemese network using the following settings:

• Data set: MNIST-FASHION in the Section (2.4.1) and (3.6.1).

• Feature vector: Twin of Convolutional Neural Network see the section (3.5).

• Loss function: Contrastive Loss Function in (2.1).

• Distance: Euclidian distance (1.8).

• Samples: 1600 samples, 200 of each class, 3200 pairs.

• Optimizer: Adam with default parameters.

• batch size: 1, 5, 10, 20, 30.

• number of epochs: 20, 50, 100.

• Environment: for software see (3.4.1) and hardware (3.4.2).

Table 3.2: The accuracy of the training and testing and evalulation set.

epochs batch Training Test Evaluation
20 1 92.78% 86.83% 81.25%
20 5 90.72% 86.18% 80.00%
20 10 88.78% 85.03% 83.57%
20 20 90.56% 86.96% 83.17%
20 30 86.87% 84.82% 77.55%
50 1 95.69% 85.51% 74.60%
50 5 91.84% 83.12% 80.05%
50 10 91.44% 84.60% 77.30%
50 20 92.28% 83.12% 78.40%
50 30 92.81% 86.41% 79.68%
100 1 98.34% 87.58% 79.50%
100 5 97.22% 85.72% 79.18%
100 10 98.44% 87.00% 75.00%
100 20 97.06% 87.97% 82.60%
100 30 97.75% 87.73% 78.97%

• Through the results obtained by our model, we can say that we have obtained very well
results that have achieved the goal of the experiments, which is to generalize through a
few examples.

• We also reached a training method that gives good results, which is to pre-train the model
in a few instances before starting the actual training.

• As we noticed after training the model on several settings, it shows us that test accuracy
settles at a certain percentage that does not exceed 87%, although training may exceed
this number when we increase the number of epochs.
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• The most important thing we noticed through our experiments is that the accuracy on
the evaluation set is not related to intensive training, but through a little training, we
got good results, close to 84% in the case of 20 epochs with 10 batch, while in the case
of 100 epochs we got 75.00%.

Figure 3.5: The graph for the performance over 20 epochs.

Figure 3.6: The graph for the performance over 50 epochs.

Figure 3.7: The graph for the performance over 100 epochs.
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3.6.3 Visualization

In this section, we present our results, but in an illustrated way that is easy to extrapolate.
These results were recorded through our model with the following settings batch size of 10 and
20 epochs, which recorded the best possible accuracy especially on the evalulation set. We start
by presenting our results in the form of a Confusion Matrix which briefly demonstrates the
accuracy of our model In the various divisions of our data set, as described below:

Figure 3.8: The confusion matrix for the settings of 10 batch size and 20 epochs performance
on the train set.

Figure 3.9: The confusion matrix for the settings of 10 batch size and 20 epochs performance
on the test set.
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Figure 3.10: The confusion matrix for the settings of 10 batch size and 20 epochs performance
on the evaluation set.

In this visualization see the Figure below(3.11), we show the final result of our model,
which is to differentiate between classes that were not seen before, through training from few
examples. When the similarity ratio approaches one, they are similar, and less than 0.5 means
there is a dissimilarity between them.

Figure 3.11: Visualization of differentiate between classes from evaluation set.
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3.7 Conclusion

In this chapter, we did experiments on Siamese Networks using Contrastive Loss to make sure
that it gives general results on classes that we have not trained on before, and this is through
the data set that does not contain many examples such as Fashion MNIST, we also divided the
data set in our own way and we reduced the size of the training data set to about 200 examples
for each class to enable us to observe the results.

Finally, we made some observations through our experiments and also we display some
visualization.
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Conclusion

We have studied in this work an important topic, which is learning through a small amount of
data or as it is called Few-shot learning, where we have tried to provide a comprehensive view
of the field and the beginning was to define the concept of FSL and what are k-shot n-way,
support set and query set, without forgetting its challenges, we have also outlined the differences
between the most important variations, we have even gone into the depths by abstracting the
most important approaches in the field such as Meta learning and Metric learning, up to transfer
learning which is also included, we have presented the most important data sets in FSL.

As for related work, we have mentioned in detail the methods used in the field, not all but
the main ones, with a specification of the result of each of them, and we have finished the
theoretical side by mentioning some important applications.

Our experiments focused on studying the generalization problem through a small number
of training data using the Siamese neural network, especially concerning the MNIST Fashion
dataset, where we noticed that it was not widely used in the field, so we divided it in our way
and reduced the amount of data from 6000 samples for each class down to 200, as well as we
studied the model based on two variables: the number of epochs and the batch size. At the
end of our experiments, we obtained the result that shows that generalization is not related to
intensive training, because with a small training of 20 epochs and 10 batches, we obtained an
accuracy of approximately 84%.
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