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ملخص
الإلـكترونية الهجمات عدد يادة ز بسبب والمطلوبة أهمية الأكثر المجالات من المعلومات أمن يعتبر
التطوير أثر فقد ، ذلك ومع الحماية. أنظمة من العديد تطوير تم ، الواقع في والمؤسسات. الأفراد على
إلى الحاجة تأتي هنا ومن عملهم. كفاءة على الإلـكترونية الهجمات في المستخدمة للأساليب المستمر
الأنظمة هذه توفر استباقي. بشكل الإلـكترونية التهديدات وتحليل لاكتشاف ذكية حماية أنظمة بناء
التعلم نهج على استناداً المطلوبة. والدقة بالسرعة تتميز قرارات لاتخاذ الشبكات أمن لمحللي عملية رؤى
كشف لنظام نموذجاً العمل هذا في نقترح ، المجالات من العديد في كفاءته مؤخراً أثبت الذي العميق
التلقائي التشفير وبنية (Self − Taught Learning) الذاتي التعلم إطار على يعتمد الشبكي التسلل
التجريبية النتائج أظهرت وتقييمه. نموذجنا لتدريب NSL-KDD بيانات مجموعة نستخدم التلافيفي.

والمتعدد. الثنائي التصنيف من لكل % 78 .41 جيدة دقة يبلغ المقترح النموذج أن

بنية الذاتي، التعلم العميق، التعلم الشبكي، التسلل كشف نظام الشبكات، أمن : مفتاحية كلمات
NSL-KDD البيانات مجموعة التلافيفي، التلقائي التشفير



Abstract

Information security is considered one of the most important and in-
demand areas due to the increase in the number of cyberattacks on in-
dividuals and organizations. In fact, many protection systems have been
developed. However, the continuous development of methods used in cy-
berattacks has affected their work efficiency. Hence, comes the need for
building intelligent protection systems to proactively detect and analyze
cyber threats. Those systems provide practical insights for network secu-
rity analysts to make decisions characterized by required speed and ac-
curacy. Based on a deep learning approach that has recently proven its
efficiency in many areas, we propose in this work, a network intrusion de-
tection model based on the Self-Taught Learning (STL) framework and the
Convolutional Autoencoder architecture. We use the NSL-KDD dataset to
train and evaluate our model. The experimental results show that the pro-
posed model reaches a fairly good accuracy of 78.41% for both binary and
multiclass classification.

Keywords : Network security, Network intrusion detection, Deep learning, Self-taught

Learning, Convolutional autoencoders, NSL-KDD dataset.



Résumé

La sécurité de l’information est considérée comme l’un des domaines les
plus importants et les plus demandés en raison de l’augmentation du nom-
bre de cyberattaques contre les individus et les organisations. En effet,
de nombreux systèmes de protection ont été développés. Cependant, le
développement continu des méthodes utilisées dans les cyberattaques a af-
fecté leur efficacité de travail. D’où la nécessité de créer des systèmes de
protection intelligents pour détecter et analyser de manière proactive les
cybermenaces. Ces systèmes fournissent des informations pratiques aux
analystes de la sécurité réseau pour prendre des décisions caractérisées par
la rapidité et la précision requises. Basé sur une approche d’apprentissage
profond qui a récemment prouvé son efficacité dans de nombreux domaines,
nous proposons dans ce travail, un modèle de détection d’intrusion réseau
basé sur le framework Self-Taught Learning (STL) et l’architecture dauto-
encodeurs convolutifs. Nous utilisons le jeu de données NSL-KDD pour
entrainer et tester notre modèle. Les résultats expérimentaux montrent
que le modèle proposé atteint une assez bonne précision de 78.41% pour
la classification binaire et multiple.

Mots clés : Sécurité des réseaux, Détection d’intrusion réseau, Apprentissage en pro-

fondeur, Self-taught Learning, Autoencodeurs convolutifs, Ensemble de données NSL-

KDD.
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INTRODUCTION

The constant growth of computer systems has led to the increasing dependency of en-
terprises, organizations, and individuals on computer networks in performing their tasks and
providing their services in modern ways. Computer networks have become more vulnerable to
attacks, which exposes them to numerous important threats, especially in recent years. Al-
though there are different systems to protect networks from these threats, such as: firewalls,
user authentication, and data encryption, these systems have not been able to provide full
protection for networks and their systems against threats that are vulnerable to them and that
become complex over time. Therefore, there is a need to make extensive use of intrusion de-
tection systems (IDS) to be the second line of defense for computer network systems together
with other network security strategies.

Typical intrusion detection systems are based on stored signature patterns for known intru-
sions to be used to identify malicious or suspicious activities in the information system [28]. This
type of approach is called signature-based (also known as misuse or pattern-based). The main
disadvantage of this approach is its inability to detect new attacks (signatures not yet known).
This led to another approach which is called anomaly detection (also named behavior-based)
techniques [28]. The latter can detect both novel and known attacks if they demonstrate large
differences from the normal profile. Since anomaly detection techniques signal all anomalies as
intrusions, false alarms are expected when anomalies are caused by behavioral irregularity in-
stead of intrusions. Therefore, pattern recognition and anomaly detection techniques are often
used in combination to complement each one another. Thus, the building of a highly efficient
intrusion detection system to detect these penetrations of different kinds is one of the research
areas that are very much important in the field of network security. However, the search for
features relevant to attacks and possibly destructive behaviors from data exchanged over the
network is not an easy operation.

1



Intrusion detection is one of the most important topics in the area of protecting the
security of networks, organizations, and individuals. Today, there are many approaches
used in this area, and there are many intrusion detection systems available, but unfor-
tunately, none of them are without defects yet [52]. Therefore, there was a need for
continued research into intrusion detection systems in view to a new propose experiment
structures with a good protection rate. This is what motivates us to begin this research,
which aims to design and develop a network IDS model based on deep learning approach.

The main objective of this research is to develop and experiment a network IDS based
on anomaly detection using the deep learning approach, which has given a promising result
in several other fields. The proposed system uses the NSL-KDD dataset [31] (released in
2009), which is a dataset of TCP/IP connections, and which has two types of data. The
training data which is used for the development of intrusion detection model, and test
data which is used to evaluate the performance of the system developed. Our contribution
is to propose and implement a network intrusion detection system on the Self-taught
Learning (STL) framework [37] and the Convolutional Auto-encoder architecture. We
provide python implementation and experimental results with an extensive evaluation
and discussion. The preliminary evaluation shows an encouraging result, with a fairly
good precision to classify intrusion from normal traffic.

This document comprises three chapters, organized as follows:

• Chapter 1 : The opening chapter is devoted to elementary notions. It is divided
into three sections: The first represents the different aspects of computer security
and the concepts relating to networks in general. The second describes intrusion
detection systems, their different types, working principles, advantages and disad-
vantages. Finally, we introduce the basic concepts of machine learning, particularly
deep learning.

• Chapter 2 : A review of some studies related to network intrusion detection
systems based on deep learning approaches is given in the second chapter.

• Chapter 3 : In the last chapter, we will discuss the process of the development
and the implementation of our proposed model and how they might be applied on
NSL-KDD datasets. We will also present a study of the result and a brief discussion
of those outcomes, with a simple comparison.
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Chapter1

BACKGROUND

1.1 Introduction

In this chapter, we present various basic concepts that are important to facilitate
the understanding of the rest of the chapters. It is divided into three sections: the first
presents the basic concepts related to information security, especially those related to
network security, and the second deals with some kind of detail about intrusion detection
systems and their various classifications, and the last section includes a review of deep
learning and some model architectures such as convolutional neural networks, recurrent
neural networks, and autoencoders.

1.2 Security Basics

With the increasing growth of network technology and uses for the exchange of infor-
mation. We hear daily about attacks on information systems, computers of all kinds, and
mobile devices in organizations, banks, universities, schools, and individuals. The most
known examples of attacks are denial of service, identity theft, malware, etc.

The need to defend against these attacks has given birth to a new discipline within
information technology known as information security, which focuses on the protection of
digital information for organisations and individuals.

1.2.1 Terminology

This section provides background information about the main attacks that currently
exist against information systems, particularly network attacks, denial of service, and
data attacks. we begin with the description of some frequently used terminologies in the

3



Chapter1: 1. BACKGROUND 1.2. SECURITY BASICS

area of computer security and then describe the different techniques used to carry out
the various attacks and we will discuss the basic principles in the subject of information
security and networks in general, which help as to understand the various attacks and
strategies to avoid, reduce and increase protection.

Information system

The information system is an integrated set of components, technological, organiza-
tional and human means to acquire, process, store and communicate information within
an organization or between different organizations [39].

Information
system

Hardware

Software

Data

Human

Network
Communications

Figure 1.1: The Components of Information Systems

Information system security

The concept of information system security covers a set of methods, techniques and
tools responsible for protecting the resources of an information system in order to ensure
the availability of services, the confidentiality and the integrity of information.

Ordinarily, it is described as the protection of information and company against pur-
poseful or accidental activities causing damage to its owners or users. Information security
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should be focused first of all on eliminating risks, and not on minimizing the adverse im-
pacts of accidents [26].

Cyber security

The terms cybersecurity and information security are often used interchangeably, but
they are two different concepts. Cybersecurity refers specifically to protecting computer
systems from unauthorized access. On the other hand, information security is a broader
category that encompasses all information assets, whether they are in hard copy or digital
form [15]. There are two primary types of cybersecurity threats:

1. External threats: These are threats that originate from outside of an organization
and include viruses, malware, and hackers [15].

2. Internal threats: These are threats that originate from within an organization and
include disgruntled employees, careless employees or traitor [15].

Vulnerability

A vulnerability is a weakness or error in a system or a device. This can leave the
system open to attack or unauthorized access. Vulnerabilities can be caused by coding
errors, outdated software, or simply a lack of security measures. when exploited, can
compromise the confidentiality, availability, and integrity of data stored in them through
unauthorized access, the elevation of privileges, or denial of service. A code or tool used
to take advantage of a vulnerability is called an exploit [15].

Risk

A risk is a quantifiable likelihood of a threat taking advantage of a vulnerability in a
system, or the probability that a threat will exploit a vulnerability.This probability can
be difficult to quantify, as it depends on a variety of factors, including the nature of the
vulnerability and the sophistication of the threat [15].
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Threat

Something that is a source of danger; capabilities, intentions, and attack methods of
adversaries that can exploit or cause harm to a system [15].

Exploit

An exploit is an attack that takes advantage of vulnerabilities in an operating system,
network, or hardware. Frequently, exploits take the form of software or code that aims to
gain access to systems or collect network data [15].

1.2.2 Security Properties

When it comes to information security, the three main principles are confidentiality,
integrity, and availability. These principles are often referred to as CIA. Each one of these
principles is important, and must be protected in order to maintain a secure system.
Some other properties are sometimes included. Because different applications will have
different requirements, a system may be designed to maintain all of these properties or
only a chosen subset as needed, as described below [29].

All security controls, mechanisms and safeguards are set up to ensure one or more of
these protection concepts. Hackers who organize attacks on systems exploit a combination
of vulnerabilities to try to destroy these three principles. Figure 1.2 illustrates the security
principles.

Confidentiality

Confidentiality is one of the most critical security properties of a system. It specifies
the only authorized entities that are allowed to access information. This property is
necessary to maintain the secrecy of information [29].

There are a variety of mechanisms to ensure confidentiality, the most common are
access control and encryption. Access control mechanisms prevent unauthorized entities
from reading information until they prove that they are authorized. Encryption does not
prevent access to information, but instead makes it challenging to read and understand.
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Integrity

CIA

Figure 1.2: The security principles [15]

Integrity

Information assurance is an essential part of protecting organization’s data. One of the
essential aspects of information assurance is data integrity - ensuring that only authorized
entities can alter information within a system [29]. This property keeps information from
being changed when it should not, which is essential for maintaining data reliability.
When data integrity is violated, it can have severe consequences for an organization. It
can impact data reliability, cause financial losses, and even put people’s safety at risk.
Therefore, it is essential to ensure data integrity.

Various mechanisms exist to support data integrity and detect when it has been vi-
olated. In practice, these mechanisms are similar to the access control mechanisms for
confidentiality. Detecting integrity violations may be revealed by:

• Tracking data changes.

• Verifying the source of data.

• Checking the consistency across systems.
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Availability

In computing, availability is the property that the information on a system is obtain-
able when needed. Information that is kept secret and unaltered might still be made
unavailable by attackers conducting denial of service attacks [29].

Non-repudiation

Nonrepudiation provides an assurance that the sender of data is provided with proof
of delivery and the recipient is provided with proof of the sender’s identity. Further,
this concept can apply to any activity, not just the sending and receiving of data. In a
more general sense, it is a mechanism to prove that an activity was performed and by
whom. Nonrepudiation is typically comprised of authentication, auditing/logging, and
cryptography services [53].

Authentication

Authentication is the mechanism to verify the identity of the users, process, or device,
often as a prerequisite to allowing access to resources in an information system [53].

1.2.3 Network Attacks

A computer network is a system in which two or more devices are connected to each
other to share resources. Networks can be used for a variety of purposes, including
sharing files and folders, printing documents, and accessing the internet. In order to
access resources on a network, users must first be authorized to do so. However, networks
are also vulnerable to attacks, and attackers can exploit vulnerabilities in order to gain
unauthorized access to resources or to cause malicious activity. In this part, we will
highlight some of the most common types of network attacks.

1.2.3.1 Denial of Service

A Denial of Service (DoS) attack is one of the main threats to the availability of sys-
tems and services. It is designed to prevent a system or service from normally functioning
by exploiting known vulnerabilities in the operating system, applications, or even net-
work protocols. Through this type of attack, the attacker prevents authorized users from
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accessing the service by sending a flood of fake requests to the target system, confusing
it and preventing it from responding to legitimate requests [9].

Among the most famous methods used in denial of service attacks is SYN flooding,
where the attacker sends many fake connection requests to the target system, which in
turn will respond to these requests and then wait for the third stage of the handshake
process since the requests are fake (carrying an IP Does not exist at all). The target
system keeps waiting for responses that never come, as shown in Figure 1.3.

Figure 1.3: A SYN flooding based DoS attack [9]

1.2.3.2 User to Root (U2R)

A user to root attack is among the most dangerous attacks on computer networks
because it allows the attacker to illegally gain the privileges of the root user, making him
gain complete control over the system. Initially, the attacker connects as a regular user
(possibly acquired by password sniffing, dictionary attack, or social engineering) and then
obtains root access by exploiting vulnerabilities in software and the system itself [51].

One of the most common ways to get superuser permissions is through a buffer overflow
exploit. A buffer overflow occurs when a program copies a lot of data into a fixed buffer
without checking the fit of the data. If the data is too large for the buffer, it can flow into
adjacent memory locations, potentially allowing an attacker to execute arbitrary code or
take control of the system.
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1.2.3.3 Remote to Local (R2L)

Remote to Local (R2L) attack is a class of attack whose goal is unauthorized access
from a remote machine. An attacker sends packets to a machine over a network and then
exploits a vulnerability to gain local access as a user of that machine [51].

There are many possible ways an attacker can gain unauthorized access to a local
account on the device. Dictionary, Ftp-Write, Guest, and Xsnoop attacks try to exploit
weak or faulty system security policies. The Xlock attack involves social engineering. For
the attack to succeed, the attacker must successfully spoof a human factor to enter their
password into a screensaver that is a Trojan horse.

1.2.3.4 Probing

Targeted attacks rely on prior knowledge of network systems vulnerabilities. Probing
is a class of attacks whose purpose is to gather all information about network systems so
that the attacker scans a network to obtain a map of the network and available services.
Port scanning is an essential component of network security audits, and attackers can also
use it to find and exploit vulnerable systems [51].

In addition, examining the ports can tell us a lot about the network, such as the
current hosts, the IP and MAC addresses in use, and the filtering rules in place.

1.2.4 Network Security Techniques

Network security is the process of protecting a computer network from unauthorized
access, theft, or damage. Security policies define the permissions to use network com-
ponents and resources. To build an effective network protection strategy, all potential
security threats must be identified, and then the most effective set of tools to combat
them must be selected. We will discuss some of the common techniques in the following
section.

1.2.4.1 Virtual private network (VPN)

A VPN is a technology that lets users and servers securely connect to a private network
over the Internet. It allows the creation of a computer network inside the internet or a
private network across a public Internet network. This technology is used extensively in
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corporate environments to allow employees to connect to the corporate network remotely
[15]. The encrypted connection helps ensure that sensitive data is safely transmitted,
and it prevents unauthorized people from eavesdropping on the traffic. It also enables
the user to work securely. Tunneling protocols are used to connect distant computers and
servers into one network. These protocols create figurative tunnels to transfer information
between a remote server and a terminal through different networks. This concept is
illustrated by 1.4.

Figure 1.4: VPN Connection [15]

1.2.4.2 Firewalls

A firewall is a network security system, it can be either software or hardware based,
that is used to enforce a security policy on network connections. By allowing or denying
traffic to pass into or out of the network. A firewall can protect a network from unau-
thorized access and attacks. It resembles a gate guard in a secure facility. The guard
examines all the traffic trying to enter the facility, cars with the correct sticker or delivery
trucks with the appropriate paperwork are allowed in [9].

Firewalls can be very effective in protecting a network, but they are unable to recognize
attacks. They simply block all traffic, except for packets that comply with certain rules.
These rules are manually set by network administrators and can vary depending on the
security policy of the network. So, the effectiveness of the firewall depends on the skill of
the administrator in setting the rules.
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Figure 1.5: How a firewall works [9]

The security policy defines which network devices will operate at specific points within
the network. Communications to the Internet pass through the firewall, as shown in the
figure 1.5. This firewall will block all traffic except that authorized by the security policy.
For example, blocking traffic on a port only tells the firewall that the port is closed. There
are many firewalls, such as pfSense [36], OPNSense [33], ClearOS [8] etc.

1.3 Intrusion Detection Systems

Firewalls play an important role in network security, but they are not sufficient to
protect systems from all possible attacks. One reason is that unauthorized online activities
are not only carried out by external attackers, but also by internal sources, such as
fraudulent employees or people who abuse their privileges for personal gain or revenge.
This type of activity can often go undetected by a firewall. Additionally, firewalls work
by only allowing traffic that is predetermined as legitimate, but they do not examine the
contents of that traffic. This could allow malicious or unauthorized traffic to pass through
the firewall undetected. Another reason that firewalls are not sufficient to protect systems
is that they cannot prevent all kinds of attacks. Standard network security solutions with
a firewall were not designed to handle network and application layer attacks such as denial
of service, worms, viruses, and trojans horses. These attacks can be very damaging and
can leave a system vulnerable to further attack. These reasons, along with the increasing
prevalence of online threats, have led to the use of intrusion detection system.
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1.3.1 Definition

An Intrusion Detection System (IDS) is a security system that monitors, using traffic
analysis, the set of events occurring in an information system and looks for signs of
malicious activity. Intrusions can be caused by attacks from outsiders (such as hackers),
or by authorized users trying to gain additional privileges or access to information that
they should not have. IDS systems can be based on either signature (matching known
patterns of malicious activity) or anomalies (detecting unexpected or unusual behaviour
that may be indicative of an attack) [9].

1.3.2 Basic architecture of an IDS

Many IDSs have been proposed in both the commercial and research areas since
Dorothy Denning produced the first model of intrusion detection at SRI International
[41]. Despite the wide range of methodologies used to collect and analyze data by these
systems, the majority of them rely on a common architectural framework (Figure 1.6),
which includes the following components:

Figure 1.6: Basic architecture of an intrusion detection system (IDS) [41]

• Data gathering device (sensor): is responsible for collecting and filtering data
from the monitored system and send it to the detection engine.

• Intrusion Detection Engine: its role is the matching of collected data from
sensors with the corresponding in knowledge base to identify intrusive activities.
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• Knowledge base: it usually contains a set of rule or signature for different attacks
or information about them. The knowledge base is usually provided by security
experts or some techniques like statistical measures.

• Configuration: this device provides information about the current use state of the
IDS in which we can apply security policy.

• Response component: passive or active measures (can either be automated or
involve human interaction) taken in response to the detection of an attack, to stop
it or to correct its effects.

1.3.3 Position of the IDS in the network

Intrusion detection systems must be positioned in strategic places to see network
traffic to analyze. Most companies and organizations support Network IDS in addition to
firewalls. It is important to consider the position of the IDS concerning the firewall [9].

The intrusion detection system can be located between the firewall and the internal
network in order to detect the intrusion passed by the firewall as shown in Figure 1.7, or
between the servers and the user group for the detection of internal intrusions, or before
the firewall as shown in Figure 1.8

Figure 1.7: NIDS sensor placed behind firewall [9]

1.3.4 Classification of IDS

Several ways to classify IDS are described using different analysis and control methods.
Each of them has advantages and disadvantages, and they are chosen according to the
needs of the system and the purpose it is supposed to achieve [41].
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Figure 1.8: NIDS sensor placed in front of firewall [9]

1.3.4.1 Classification by source of data

Intrusion detection systems are divided into three groups based on the data source to
be analyzed: host-based IDS, network-based IDS and hybrid IDS.

• Host-based Intrusion Detection System HIDS

Host intrusion detection systems (HIDS) are systems that monitor individual hosts or
devices in a network for malicious or unauthorized activity. HIDS monitors all inbound
and outbound packets of the device and alerts the administrator of any suspicious
activities. It can also take snapshots of system files at certain intervals and compare
them to see if any critical files were modified or deleted. This allows the administrator
to be alerted when required [4]. Figure 1.9 shows the positioning of a HIDS on the
network.

The great benefit of HIDS is that it provides real-time alerts to changes in the system,
which can help identify an attack when it is happening. Additionally, HIDS can help
identify the source of an attack, which can be very helpful in tracking down and prose-
cuting the perpetrators. HIDS is not a perfect solution, but it is a valuable tool in the
arsenal against system attacks. There are many HIDS, such as SolarWinds Security
Event Manager [44], OSSEC [34] etc.

• Network-based Intrusion Detection System NIDS

It is the most common form of an intrusion detection system. These systems detect
attacks by listening to network segments or switches by capturing and analyzing net-
work packets. Thus, it can monitor all packets traveling between a group of computers
connected to the network by matching one or more packages with the database of sig-
natures for attacks or analyzing the traffic to detect anomalies responsible to incoming
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Figure 1.9: HIDS location [4]

packets that may circumvent the firewall [4]. There are many examples of network
intrusion detection system such as Snort [47], Suricata [22] etc.

Figure 1.10 shows a network that uses three NIDS units that are placed on strategic net-
work segments so that they can monitor network traffic for all devices on the segment.
This configuration represents a standard network topology where subnets comprising
public servers are protected by NIDSs. When a public server within a subnet is com-
promised, the server can become a platform for launching additional vulnerabilities, so
it is necessary to ensure careful monitoring to prevent further damage.

• Hybrid Intrusion Detection

Both network-based and host-based intrusion detection systems have their own strengths
and benefits. Network-based intrusion detection systems are good at detecting attacks
that are targeting the network infrastructure, such as denial-of-service attacks or scan-
ning for vulnerable systems. Host-based intrusion detection systems are good at de-
tecting attacks that are targeting the hosts on the network, such as malware infections
or brute-force password attacks.

Hybrid intrusion detection system is made by combining two or more IDS approaches,
with the aim of improving the network’s resistance to attacks and misuse, in addition
to promoting pain policy and ensuring greater flexibility in application and deployment
options. By combining the strengths of each type of intrusion detection system, we can
create a more effective and comprehensive intrusion detection system.
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Figure 1.10: NIDS Network [4]

1.3.4.2 Classification by Intrusion detection approaches

Detection methods are the basis of intrusion detection techniques, and are the en-
gine that recognize the malicious activities of a source data. Detection methods analyze
the data they monitor and trigger alerts if malicious traffic is perceived. Accordingly,
intrusion detection systems can be categorized according to the detection methods used
into anomaly based intrusion detection systems, and signature based intrusion detection
systems [4].

• Signature-based Intrusion Detection System

Signature-based IDS is a detection technique that uses specific patterns, called signa-
tures, to identify attacks. These signatures can be byte sequences in network traffic, or
known malicious instruction sequences used by malware. This terminology originates
from antivirus softwares, which refers to these detected patterns as signatures.

Although signature-based IDS can easily detect known attacks, it is difficult to detect
new attacks, for which no pattern is available. As a signature-based IDS monitors the
packets traversing the network, it compares these packets to the database of known
attack signatures to flag any suspicious behavior.

Advantages of Signature-based IDS
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– detects threats effectively without creating a high number of false alarms.
– It is difficult to move on.

Disadvantages of Signature-based IDS

– Discover only already know attacks.
– It needs constant updating of the signature database with new ones.

• Anomaly-based Intrusion Detection System

It depends on defining what is normal or permissible behavior in the system and then
reporting any act or event that falls outside the permissible or normal limits.

An anomaly-based system operates on the assumption that malicious events are differ-
ent from normal actions, and therefore the differences are sought to detect the attack.
These systems constitute profiles of historical data collected during a period of nor-
mal operation. It then collects event data to determine when the monitored activity
deviates from normal behavior and triggers an alarm accordingly.

Advantages of Anomaly-based IDS :

– It is good at detecting new and undiscovered attacks.
– It does not need constant maintenance.

Disadvantages of Anomaly-based IDS

– It requires a considerable training sample for distinguishing between normal
and abnormal traffic.

– It generates a large number of false alarms.

1.4 Deep Learning

Nowadays, deep learning is at the core of intelligence systems due to the sophistication
of machines and the abundance of data, and the good results in various fields such as
healthcare, visual recognition, text analytics, and cybersecurity. Deep learning is an
artificial intelligence technique derived from machine learning. So it is not possible to talk
about deep learning without reminding the principles of machine learning and artificial
intelligence.

This section begins with a brief overview of the evolution of deep learning, from its first
technologies to deep learning. We will also cover the basics of machine learning, including
its different methods and branches. We will also look at artificial neural networks (ANN)
and their different types. Finally, we introduce the main core deep learning architectures.
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1.4.1 History

Machine learning is the most advanced branch of artificial intelligence. We will try to
cover the essential stages in the development of intelligent systems (artificial intelligence,
machine learning, and deep learning) in the following points.

• 1943 : In [30], Walter Pitts and Warren McCulloch present a mathematical model
of biological neurons. This McCulloch Pitts Neuron is extremely limited in its
abilities and lacks a learning mechanism. Nonetheless, it will lay the groundwork
for deep learning and artificial neural networks.

• 1950 : In This year the mathematician Alan Turing proposed what he called the
Turing test. The test is designed to determine if a computer has a human-like
intelligence [54].

• 1952 : Researcher Arthur Samuel created an early learning machine capable of
learning to play checkers. It used annotated guides by human experts and played
against itself to learn to distinguish the right moves from bad ones [32].

• 1957 : Frank Rosenblatt (psychologist) invented the perceptron, the world’s first
neural network for computers. It successfully stimulated the human brain’s thought
processes. This is the origin of today’s neural networks [32].

• 1960 : In [25], Henry J. Kelley presents the first-ever continuous back-propagation
model. His model is based on Control Theory, but it lays the groundwork for further
refinement and will be used in ANN in the future.

• 1962 : In [12], Stuart Dreyfus presents a backpropagation model that employs a
simple derivative chain rule rather than dynamic programming, which was previ-
ously used in backpropagation models. This is yet another small step in the direction
of deep learning’s future.

• 1965-71 : Alexey Grigoryevich Ivakhnenko and Valentin Grigoryevich Lapa have
developed a hierarchical representation of a neural network that employs a poly-
nomial activation function and is trained using the Group Method of Data Han-
dling (GMDH). It is now widely regarded as the first multi-layer perceptron, and
Ivakhnenko is the father of deep learning [3].

• 1979-80 : An ANN learns how to recognize visual patterns. Kunihiko Fukushima
developed the "Neocognitron," a pattern-recognition ANN. It is the first convolu-
tional neural network [14].
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• 1982 : This is the year when John Hopfield created Hopfield Network is nothing
more than a recurrent neural network. It is a content-addressable memory system
that will be useful for future recurrent neural network (RNN) models in the modern
deep learning era [3].

• 1985 : The appearance of Boltzmann Machine, It is a stochastic RNN created by
David H. Ackley, Geoffrey Hinton, and Terrence Sejnowski. This neural network
has no output layer, only an input layer, and a hidden layer [1].

• 1986 : Terry Sejnowski (neuroscientist) proposed a program that could learn how
to pronounce English words (NETtalk) [45].

• 1989 : Yann LeCun trains a convolutional neural network to recognize handwritten
digits using backpropagation [3].

• 1991 : Sepp Hochreiter highlights the vanishing gradient problem, which can make
deep neural network training more difficult due to the now-famous disappearing or
expanding gradient problem [46].

• 1997 : Schmidhuber and Hochreiter proposed a recurrent neural network framework
called Long Short-Term Memory (LSTM) [20].

• 2006 : Geoffrey Hinton, Ruslan Salakhutdinov, Osindero, and Teh publish the
paper "A fast learning algorithm for deep belief nets" [19].

• 2008 : Andrew NG’s group at Stanford has begun campaigning to use GPUs for
Deep Neural Network Training [3].

• 2009-2012 : ImageNet(2009), created by Stanford professor Fei-Fei Li, and AlexNet
(2012) developed by Alex Krizhevsky, [3].

• 2014 : Ian Goodfellow and colleagues disclose the first operational implementation
of a generative model based on adversarial networks (GAN) [3].

• 2016 : AlphaGo, developed by Google’s DeepMind, is the first computer program
to defeat a professional human player in the Go game [3].

• 2017 : Vaswani et al. proposed replacing RNNs with self-attention and started the
effort to evaluate this idea. Ashish, with Illia, designed and implemented the first
Transformer models [55].

• 2020 : The GPT-3 natural language processing system, developed by Open AI, has
the extraordinary capacity to generate human-like writing [6].

• 2021 : The appearance of Vision Transformer (ViT), Which gives excellent results
compared to the latest convolutional networks while requiring less computational
resources to train [11].
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1.4.2 Machine Learning

Machine learning (ML) is a subfield of artificial intelligence (AI) that provides com-
puters with the ability to learn from data. This contrasts with traditional computing
algorithms, which are explicitly programmed by humans and rely on pre-defined rules.
The purpose of machine learning is to understand data to build data-driven models and
programming through the systematic detection of statistically significant patterns in the
available data. In the 1930s, Thomas Ross made the first attempt to create a machine
that mimic the behaviour of a living creature [40]. Arthur Samuel in 1959, defined ma-
chine learning as a "field of study that allows computers to learn without being explicitly
programmed" [42].

1.4.2.1 Types of Machine Learning

According to what goal to be achieved by using ML, it can be classified into different
types as shown in Figure 1.11.

Figure 1.11: Machine learning types and tasks
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1. Supervised Learning : Supervised learning is a learning technique in which the
computer is provided with examples of inputs that have been categorized with de-
sired outputs. The purpose of this method is for the algorithm to be able to learn
by comparing its actual output with the studied output to find errors and modify
the model accordingly [43]. Supervised learning includes two tasks Regression and
Classification.

(a) Regression : We talke about regression when the prediction is continuous
values (quantitative), the output takes continuous values, for example pre-
dicting house prices. There are many different types of regression, but linear
regression is the most common. It is a simple algorithm that finds a straight
line that best fits the data. This line can be used to predict future values for
the dependent variable.

(b) Classification : Is a data analysis task that involves identifying a model that
describes and distinguishes data classes and concepts. The goal is to use this
model to predict the class to which a new observation belongs, on the basis of
a training set of data. Classification can be used to predict discrete values or
classes, in which case the output takes class labels.

2. Unsupervised Learning : Unsupervised learning is a technique where the ma-
chine uses unlabeled data. In this case, the algorithm learns the internal represen-
tation or important features to discover relationships or structures within the input
data. The advantage of unsupervised learning is that it can be used to find pat-
terns in data that humans may not easily identify [43]. Many different unsupervised
learning algorithms can be used, including clustering and dimensionality reduction.

(a) Clustering : Clustering algorithms can automatically recognize the pattern
inside the data by grouping there into clusters so that the data are similar
within each cluster and dissimilar from the other. The most famous clustering
algorithm is K-means.

(b) Dimensionality reduction : These algorithms reduce the number of dimen-
sions in a dataset while preserving the most important information. This can
be useful for reducing the complexity of data and making it easier to analyze.
The most well-known algorithm is PCA (Principal Component Analysis).

3. Reinforcement Learning : Reinforcement learning is a machine learning algo-
rithm that enables machines to learn how to make decisions. By providing the
machine with feedback in the form of rewards or penalties, it can learn how to
adapt its approach to achieving the best possible outcome. The most famous rein-
forcement learning algorithm is Q-Learning, which has been used to train machines
in various tasks, including playing video games and controlling robots [43].
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1.4.2.2 Machine Learning Applications

Reliance on machine learning systems has increased recently in various fields, and in
the following, we mention some applications of machine learning technology:

• Image Recognition (optical character recognition, face detection).

• Sentiment Analysis.

• NLP Natural Language Processing (text generation, translation).

• Anomaly detection (cybersecurity, medicine).

• Speech Recognition.

• Product Recommendations.

1.4.3 Artificial Neural Networks

A neural network is a set of an interconnected simple processing units, whose function-
ality is loosely based on the biological neuron. The behavior of the network is stored in
the inter-unit connection weights, obtained by a process of learning from a set of training
patterns [2]

An artificial neural network is a layer of nodes (Artificial Neuron) connected between
them, consisting of three basic layers:

• Input layer: it is the first layer responsible for receiving information (data) from
the external environment.

• Hidden (intermediate or invisible) layers: these layers perform most of the
basic work in a network. The layers are made up of neurons responsible for excreting
features.

• Output layer: after processing with neurons in the previous layers, this layer
produces and delivers the final network outputs.

Artificial neurons are a mathematical model inspired by a biological neuron that rep-
resents the basic unit of the human brain. This unit is divided into three main parts, as
shown in Figure 1.12a.
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1. Dendrites: consist of a group of thin extensions of neurons that typically receive
input from many different cell types and which often form synaptic connections.

2. Cell body (also known as soma): is the part responsible for producing the activa-
tion by processing all the information that comes from the dendrites, and it contains
a group of organelles (nucleus, lysosome, centriole,..).

3. Axon: its mission is to direct stimulation to other neurons via synaptic terminals.

On the other hand, the artificial neuron shown in figure 1.12b consists of :

1. Inputs: is a vector (a1, a2, . . . , an) with weights (w1, w2, . . . , wn), each input is mul-
tiplied by its weight.

2. Linear function z: is a summation function that sums weights after multiplies each of
input by their own associated weight, with the addition of the bias b; z =

∑n
1 aiwi+b

3. Activation function g(z): is mathematical equations that determine the output of
an artificial neuron.

4. Output : output the final activation; aout = g(z).

(a) Biological Neuron (b) Artificial Neuron

Figure 1.12: Biological neuron vs Artificial neuron [2]

Activation function

Activation functions are used at the end of a hidden unit to introduce non-linear com-
plexities to the model. Figure 1.13 shows some of the most popular activation functions.

A deep neural network is simply an artificial neural network with multiple hidden
layers, as shown in figure 1.14.
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Figure 1.13: Examples of some activation functions [2]

Input layer

Hidden layers

Output layer

Figure 1.14: Deep Neural Network (DNN) example
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1.4.4 Convolutional Neural Networks

A convolutional neural network (CNN) is a particular type of feed-forward artificial
neural network inspired by the visual cortex and designed for processing structured arrays
of data such as images. Convolutional neural networks are widely used in computer vision
and have become state of the art for many visual applications such as image classifica-
tion, object detection, and character recognition. And have also found success in natural
language processing for text classification. The name "convolution" is derived from a
mathematical operation involving the convolution of different functions. The design of a
CNN has been divided into layers as shown in figure 1.15.

Input image Convolutions Pooling Fully Connected

Figure 1.15: CNN Architecture

• Convolution layer (CONV): A convolutional layer is the main building block
of a CNN. It contains a set of filters (or kernels), parameters of which are to be
learned throughout the training. The size of the filters is usually smaller than
the actual image.A convolution operation is applied to produce a features map for
each filter on the input data. For convolution, the filter slid across the height and
width of the image, and the dot product between every element of the filter and the
input is calculated at every spatial position. Figure 1.16 shows an example of the
convolution process.
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Input image Filter feature map

Figure 1.16: Convolution operation
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• Pooling layer (POOL): The pooling layer reduces the size of the previous layer,
typically applied after a convolution layer. There are two common variations of
pooling operations: max pooling and average pooling (Figure 1.17).

1 2 7 2

3 6 5 2

1 2 4 9

3 2 2 5

6 7

3 9

3 4

2 5

Figure 1.17: Pooling types

• Flattening Layer : In this layer, the input size is transformed from shape (width,
height, depth) to a one-dimensional array. This is to take advantage of all layer
information and be ready to link to the artificial neural network. And it is considered
the last step in extracting features.

• Fully Connected (FC): It is an artificial neural network that operates on a flat-
tened input where each input is connected to all neurons. FC (Figure 1.18) is the
last layer in the CNN architectures and can be used to classify objectives.

Feature map Flattening Fully connected layers

Figure 1.18: Fully connected layers [2]
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1.4.5 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of artificial neural networks adapted to
processing time series and other sequential data like text processing, speech recognition,
and DNA sequences. This type of neural network distinguishes the presence of memory
that allows previous outputs to be used as inputs while having hidden states. The value
of the hidden state at any time moment depends on the value of the hidden state at the
previous moment and the inputs at the current moment, as shown in Figure 1.19.
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Figure 1.19: RNN architecture and it Time-layered representation [2]

• x<t> : designates the input of the network at time step t.

• h<t> : represents the hidden state of the network at time step, t and it is computed
by equation 1.1.

h<t> = g1
(
Whhh

<t−1> +Wxhx
<t> + bh

)
(1.1)

• y<t> : Signified the output of the network at time step t and it is computed by
equation 1.2.

y<t> = g2
(
Whyh

<t> + by
)

(1.2)

Where wxh, whh, why, bh, by are coefficients that are shared temporally and g1, g2

activation functions.
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The mechanism presented in figure 1.19 allows the network to work in different ways,
depending on the size of the sequence we provide as input and the size of the output
sequence we expect. Table 1 summarizes some of the ways in which RNN is used and its
application.

Table 1.1: Some applications of RNN

Type of RNN Illustration Application

One-to-One Traditional 
neural network

One-to-many
Music 

generation

Many-to-one Sentiment 
classification

Many-to-many Machine 
translation

292929



Chapter1: 1. BACKGROUND 1.4. DEEP LEARNING

The following table summarizes the advantages and drawbacks of a basic RNN archi-
tecture:

Table 1.2: Advantages and drawbacks of basic RNN architecture [2]

Advantages Drawbacks

• Inputs of any length can be pro-
cessed

• Model size not increasing with size
of input

• Weights are shared across time

• Due to its recurrent nature, the
computation being slow

• Difficulty accessing information for
a long time

• Gradient exploding and vanishing
problems

Training A Recurrent Neural Network

Recurrent Neural Networks (RNNs) are challenging to train due to their architecture,
especially if the input sequence is extensive. Many problems can occur while updating
the network weights due to what is known as exploding gradients and vanishing gradients
[35].

• Exploding Gradient : When those gradients accumulate during an update, the result
will be very large.

• Vanishing Gradients : When those gradients are small or zero, it will easily vanish.

To address these problems, several effective solutions have been proposed, such as
Long Short Term Memory (LSTM) and Gated Recurrent Units (GRUs). We will just
explain the LSTM architecture.

Long Short Term Memory (LSTM)

LSTM neural network is an architecture for RNNs introduced by by Hochreiter and
Schmidhuber in 1997 [21]. LSTM can be regarded as a modified RNN. The memory of
past input is important in the sequence learning problem. LSTM was specially designed
and modified to solve the vanishing gradient and explosion gradient problem in long-term
training. Due to the memory cell (Figure 1.20), the LSTM can maintain the error values
and continue the gradient flow.
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Figure 1.20: LSTM memory cell [10]

• Cell state (ct): Vector of fixed shape with random value initialization. It contains
the information that was present in the memory after the previous time step.

ct = it ⊙ ut + ft ⊙ ct−1 (1.3)

• Forget gate (ft): Changes the cell state, intending to eliminate non-important val-
ues from previous time steps. This helps the LSTM network to forget the irrelevant
information that does not have any impact on the future price prediction.

ft = σ
(
W (f)xt + U (f)ht−1 + b(f)

)
(1.4)

• Input gate (it): Changes the cell state with the aim of adding new information
about the current time step. It adds new information that may affect the stock
price movement.

it = σ
(
W (i)xt + U (i)ht−1 + b(i)

)
(1.5)

• Output gate (ot): Decides what the next hidden state should be. The new cell
state and the new hidden is then carried over to the next time step. Returns the
final relevant information, which will be used for stock price prediction.

ot = σ
(
W (o)xt + U (o)ht−1 + b(o)

)
(1.6)

• Hidden state (ht): It is calculated by multiplying output gate vector by cell state
vector.

ht = ot ⊙ tanh (ct) (1.7)
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1.4.6 Autoencoders

Autoencoder is an artificial neural network designed to learn the feature representation.
It consists of two parts: an encoder and a decoder (Figure 1.21). The encoder works on
mapping the input data to a low-dimensional representation space to obtain the most
appropriate feature, and then decode it back such that the reconstructed input is similar
as possible to the original one using the decoder part. The idea was originated in the
1980s and later promoted by the seminal paper by Hinton & Salakhutdinov [18].

Encoder Decoder
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Figure 1.21: Autoencoder architecture

The main purpose of autoencoder training is learning in an unsupervised manner a
representation of the data that can be used for various applications such as: dimension-
ality reduction, clustering, anomaly detection, feature representation and so on. Several
kinds of autoencoders are proposed in the literature [5] including sparse autoencoders, de-
noising autoencoders, contractive autoencoders, variational autoencoders, convolutional
autoencoders [16], and so on.

1.5 Conclusion

In this chapter, we have touched upon the various basic concepts related to the various
aspects of information security and the concepts related to networks in general, as well
as intrusion detection systems, their different types, and their working principles, finally,
a presentation of the various basic concepts of machine learning, and deep learning. In
the next chapter, we survey some typical use of deep learning architectures in the area of
network intrusion detection.
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Chapter2

NETWORK INTRUSION DETECTION
USING DEEP LEARNING

2.1 Introduction

The increasing reliance on computer networks in business, education, government,
and other fields has led to more security incidents. These incidents can have severe
consequences for organizations and individuals. Protection systems such as firewalls,
encryption, etc., are used to prevent such incidents. A firewall serves as the primary line
of defense to protect networks. Therefore, it is essential to use intrusion detection systems
for their ability to recognize and reduce malicious attacks. As attackers constantly change
attack techniques and find alternative attack methods, intrusion detection systems must
also evolve to respond by adopting more sophisticated detection methods.

Many researchers developed network intrusion detection system (NIDS) models. They
faced many challenges, including low detection accuracy, emergence of new types of ma-
licious traffic, and error detection rates. They used several methods and techniques to
overcome it, one of which is machine learning techniques such as deep learning to develop
intrusion detection systems, which will be discussed in this chapter.

Deep learning has proven effective in image recognition, speech recognition, and other
areas and has become the preferred solution to many problems. This approach has been
gradually applied to intrusion detection in recent years, and it has given impressive detec-
tion results compared to the traditional methods. In this part, we will present the most
important studies and researches on intrusion detection systems based on deep learning
techniques.

2.2 Deep neural network based NIDS
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2.2.1 Shallow neural network based NIDS

A deep neural network was used to detect intrusion in software-defined networking
(SDN) by Tang et al [48]. Where they created a deep neural network consisting of an
input layer, three hidden layers, and an output layer, as shown in Figure 2.1. In order to
train and evaluate the model, the NSL-KDD dataset [31] was used based on the selection
of only six basic features from among the forty-one features to detect attacks. This model
was implemented to classify network traffic into two categories (normal and abnormal).

Figure 2.1: Deep Learning Network Model [48]

Experimental results for a model that has been trained using setting parameters are 10
as batch size and 100 for the epoch reported that the learning rate 0.001 was performing
more effectively than the others. Where the model achieved an accuracy of 75.75% for
the testing dataset and 91.7% for the training dataset.

In another study, Kim et al [24] proposed an IDS framework using a deep neural
network consisting of four hidden layers with 100 units and using the ReLU activation
function, and the study also used Adam stochastic optimization method. The model was
trained on the KDD Cup 99 dataset, which gave an accuracy of 99.01%.

2.2.2 Convolutional neural network based NIDS

The model proposed by researchers Sheraz et al [13], uses a deep convolutional neu-
ral network (DCNN) for network anomaly detection problems to improve the real-world
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application in anomaly detection systems. This model consists of an input layer, three
pairs of convolutional layers, three fully connected layers and an output layer using one
sigmoid unit, as shown in figure 2.2. The NSL-KDD dataset was used for all of the exper-
iments in this research, where the two parts: NSLKDDtrain+ and NSLKDDTrain20p1,
were combined for the training of the model, and the two other parts: NSLKDDTest+
and NSLKDDTest212 were combined to evaluate the performance of the trained model.

The dataset has 41 features where three features (’protocol_type’, ’service’ and ’flag’)
are symbolic features which needs to be converted to quantitative data before they can be
used by DCNN. The authors studied the impact of different category encoding schemes
on classification accuracy; they chose Random-Forest algorithm due to its time efficiency,
dimensionality and accuracy of classifier. In order to take advantage of the convolutional
network, the inputs were converted from a vector of 41 features to a 32x32 2D grayscale
image, which helps to discover the localized features and learn high-level relationships
between global features.

Figure 2.2: Deep Convolutional Neural Network (DCNN) for Intrusion Detection [13]

Experimental results showed that the use of deep convolutional neural networks gave
better results than traditional methods such as dicsion tree, naive bayes and MLP, achiev-
ing an accuracy of 85.22 % and 69.56% for NSLKDDTest+ and NSLKDDTest21 respec-
tively. The DCNN used in this study is inspired by letNet 5 [27], however this model
contains heavy modifications in form of hyper-parameter selection and regularization.

1 Parts of a training NSL-KDD dataset.
2 Parts of a testing NSL-KDD dataset.
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Teyou and Ziazet [50] proposed a framework for an intrusion detection system based on
a Deep Convolutional Neural Network to detect attacks at the industrial control system
level. This framework consists of two parts: the first part is devoted to the feature
extraction process, using a CNN for this purpose, and the second part is devoted to the
classification process, where they use DCNN, as shown in figure 2.3. The study used
the benchmark network intrusion NSL-KDD dataset to train the model and evaluate the
anomaly detection accuracy.

Figure 2.3: General architecture of the proposed system [50]

After conducting several experiments on the models (CNN-SVM, CNN-KNN, CNN-
DNN, CNN-CNN), in which CNN was used as a method for extracting features. It was
observed that the proposed model achieved better results with an accuracy of 80.07% and
77.15% respectively, on the two classes and five classes classification.
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2.2.3 Recurrent neural network based NIDS

In the work of Yin et al [56], a Recurrent Neural Network-based intrusion detection
system (RNN-IDS) was used. In order to study its effect on the accuracy of intrusion
detection in binary and multiclass classification, they conducted experiments using pa-
rameters with variant values, such as the number of neurons and the learning rate. This
study used the NSL-KDD dataset to train and evaluate the proposed model, as shown in
figure 2.4.

Figure 2.4: Block diagram of proposed RNN-IDS [56]

The experiment results show that the RNN-IDS model gives high accuracy of 83.28% in
binary and 81.29% in multiclass classification compared with traditional machine learning
models, such as random forest and support vector machine. This accuracy is achieved
based on the learning rate of 0.1 and the number of hidden nodes of 80.

In another work by Chaibi et al [7] study the effectiveness of feature selection methods
on classification accuracy. They suggested an architecture implemented with two method-
ologies, as shown in Figure 2.5. In the first one, they use RNN and ANN techniques for
the classification process, with a feature selection method of information gain (IG). In the
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second one, they use an RNN with three methods which are information gain (IG), grain
ratio (GR), and correlation attribute (CA), as feature selection.

This study was done on the dataset NSL-KDD which contains 41 features, and after
applying the two methodologies, the dataset now comprises 14 features and 29 features,
respectively. The model consists of the input layer, two hidden layers with 12 neurons
and 26 neurons, respectively, and the output layer for the first methodology. The second
methodology is composed of the input layer, two hidden layers with 10 and 23 neurons,
respectively. In general, the rectifier function is used as an activation function in the
hidden layer and a sigmoid function for the output layer. For the loss function, they used
cross-entropy, while for the learning algorithm, they used Adam optimizer.

Figure 2.5: Organizational chart for proposed IDS using ANN and RNN [7]

Experimental results showed that the RNN outperforms ANN in the two methodolo-
gies. For the first methodology, ANN achieved an accuracy of 98,63% and 98,73% for
RNN, and for the second methodology, RNN achieved an accuracy of 99,60%.
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2.2.4 Autoencoder based NIDS

Javaid et al [23] have developed a network intrusion detection system based on the Self-
Taught Learning (STL) approach [37] that consists of two stages for the classification. The
first stage is feature representation, in which they used the Sparse Autoencoder. Whereas
the second stage is for the classification task, in which they employed the results of the
first stage. In this study, they used NSL-KDD for two training stages and also for the
evaluation of the model. All the implementation steps are showed in Figure 2.6.

Figure 2.6: Different steps of STL-Based NIDS implementation [23]

In order to evaluate the model, two different types of classification are applied: 2-class
(normal, abnormal) classification, 5-class (normal, R2L, U2R, DoS, Porb) classification.
To evaluate the classification accuracy, they used the testing dataset. Experimental results
show that the proposed model achieved a classification accuracy of 88.39%, 79.10%, for
2-class and 5-class, respectively.
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In another study by Rezvy et al [38], a network intrusion detection system model has
developed using an Autoencoder and Dense Neural Network. In this model, they employed
two main stages. In the first stage, they used an Autoencoder to learn an efficient data
representation. In order to achieve this, they used the training with unlabeled data, and
they employed a Dense Neural Network to classify attack types in the second stage. Figure
2.7 describes the various stages and the model architecture.

Figure 2.7: Workflow and architecture of the model proposed in [38]

The model was trained and evaluated using the NSL-KDD dataset for 5-class classi-
fication. Experimental results show that the model achieved excellent performance with
an accuracy of 99.3% for the five classes of attacks.
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2.3 Conclusion

In this chapter, we have discussed some deep learning techniques used in developing
network intrusion detection systems. We showed their effectiveness in this field compared
to traditional machine learning methods. We did not mention those traditional methods
in this chapter. We have just concentrated on deep learning methods. In the next chapter,
we will propose a model for an intrusion detection system using a deep learning approach.
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EXPERIMENT

3.1 Introduction

In this chapter, we present the proposed model of the network intrusion detection
system and the various stages of its training. We also describe the dataset and discuss
the experimental results.

3.2 Data Understanding

In this research, We relied on the NSL-KDD benchmark dataset to train and evaluate
our model because it is the most widely used in the field of building intrusion detection
systems and the train and test sets have a reasonable amount of records, making it
suitable to conduct the experiment on the complete set without the need to randomly
select a small portion. As a result, the evaluation outcomes of various research projects
will be consistent and comparable.

The NSL-KDD data set is one of the benchmark datasets for intrusion detection sys-
tems proposed by the Canadian Institute of Cybersecurity in 2009 to solve some problems
of the KDD’99 dataset discussed by Tavallaee et al [49]. The NSL-KDD dataset contains
125973 and 22544 records for training and testing sets, respectively. Each record consists
of 41 features plus a target one. It can be classified into four categories:

• Basic features: Is the basic information in the packet header derived from TCP/IP
connection without checking the payload, as shown in Table 3.1.

• Content features: To detect some types of attacks, such as R2L and U2R, we
must examine the content of packets, so we need some features to detect suspicious
behavior in the data portion, as shown in Table 3.2.
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• Time-based features: This type of feature is created based on traffic analysis over
a two-second time window, one example being the number of connections made with
the same host, as shown in Table 3.3.

• Host-based features: These features were created to detect attacks lasting longer
than two seconds, so they result from an analysis of a series of connections made to
the same host, as shown in Table 3.4.

Those features consists of 38 continuous or discrete numerical features and 3 categor-
ical features (protocol_type, service and flag). Table 3.5 shows the different values of
categorical features.

Table 3.1: Basic features of NSL KDD dataset [56]

N° Feature name Description Type

1 duration length (number of seconds) of the connection Continuous

2 protocol_type type of the protocol, e.g. tcp, udp, etc. Symbolic

3 service network service on the destination, e.g., http, telnet, etc. Symbolic

4 flag normal or error status of the connection Symbolic

5 src_bytes number of data bytes from source to destination Continuous

6 dst_bytes number of data bytes from destination to source Continuous

7 land 1 if connection is from/to the same host/port; 0 otherwise Symbolic

8 wrong_fragment number of ''wrong'' fragments Continuous

9 urgent number of urgent packets Continuous

Table 3.2: Content features of NSL KDD dataset [56]

N° Feature name Description Type

10 hot number of ''hot'' indicators Continuous

11 num_failed_logins number of failed login attempts Continuous

12 logged_in 1 if successfully logged in; 0 otherwise Symbolic

13 num_compromised number of ''compromised'' conditions Continuous

14 root_shell 1 if root shell is obtained; 0 otherwise Continuous

15 su_attempted 1 if ''su root'' command attempted; 0 otherwise Continuous

16 num_root number of ''root'' accesses Continuous

17 num_file_creations number of file creation operations Continuous

18 num_shells number of shell prompts Continuous

19 num_access_files number of operations on access control files Continuous

20 num_outbound_cmds number of outbound commands in an ftp session Continuous

21 is_host_login 1 if the login belongs to the ''hot'' list; 0 otherwise Symbolic

22 is_guest_login 1 if the login is a ''guest''login; 0 otherwise Symbolic
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Table 3.3: Time-based features of NSL KDD dataset [56]

N° Feature name Description Type

23 count
Number of connections to the same destination host as the 
current connection in the past two seconds

Continuous

24 srv_count
Number of connections to the same service (port number) as 
the current connection in the past two seconds

Continuous

25 serror_rate
The percentage of connections that have activated the flag (4) 
s0, s1, s2 or s3, among the connections aggregated in count 
(23)

Continuous

26 srv_serror_rate
The percentage of connections that have activated the flag (4) 
s0, s1, s2 or s3, among the connections aggregated in 
srv_count (24)

Continuous

27 rerror_rate
The percentage of connections that have activated the flag (4) 
REJ, among the connections aggregated in count (23)

Continuous

28 srv_rerror_rate
The percentage of connections that have activated the flag (4) 
REJ, among the connections aggregated in srv_count (24)

Continuous

29 same_srv_rate
The percentage of connections that were to the same service, 
among the connections aggregated in count (23)

Continuous

30 diff_srv_rate
The percentage of connections that were to different services, 
among the connections aggregated in count (23)

Continuous

31 srv_diff_host_rate
The percentage of connections that were to different 
destination machines among the connections aggregated in 
srv_count (24)

Continuous
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Table 3.4: Host-based features of NSL KDD dataset [56]

N° Feature name Description Type

32 dst_host_count
Number of connections having the same destination 
host IP address

Continuous

33 dst_host_srv_count Number of connections having the same port number Continuous

34 dst_host_same_srv_rate
The percentage of connections that were to different 
services, among the connections aggregated in 
dst_host_count (32)

Continuous

35 dst_host_diff_srv_rate
The percentage of connections that were to different 
services, among the connections aggregated in 
dst_host_count (32)

Continuous

36
dst_host_same_src_port
_rate

The percentage of connections that were to the same 
source port, among the connections aggregated in 
dst_host_srv_count (33)

Continuous

27
dst_host_srv_diff_host_r
ate

The percentage of connections that were to different 
destination machines, among the connections 
aggregated in dst_host_srv_count (33)

Continuous

38 dst_host_serror_rate 1 if ''su root'' command attempted; 0 otherwise Continuous

39 dst_host_srv_serror_rate
The percentage of connections that have activated the 
flag (4) s0, s1, s2 or s3, among the connections 
aggregated in dst_host_count (32)

Continuous

40 dst_host_rerror_rate
The percent of connections that have activated the flag 
(4) s0, s1, s2 or s3, among the connections aggregated 
in dst_host_srv_count (33)

Continuous

41 dst_host_srv_rerror_rate
The percentage of connections that have activated the 
flag (4) REJ, among the connections aggregated in 
dst_host_srv_count (33)

Continuous

Table 3.5: Different values for categorical features

Protocol 
Type

Service Flag

• icmp
• tcp
• udp

• ftp_data
• other
• private
• http
• remote_job
• name 
• netbios_ns
• eco_i
• mtp
• telnet
• finger 
• domain_u
• supdup
• uucp_path
• Z39_50
• smtp
• csnet_ns
• uucp

• ssh
• netbios_dgm
• urp_i
• auth
• domain 
• ftp
• bgp
• ldap
• ecr_i
• gopher
• vmnet
• systat
• http_443
• efs
• whois
• Imap4
• iso_tsap
• tftp_u

• http_2784
• harvest
• echo
• klogin
• link
• sunrpc
• login
• kshell
• sql_net
• time
• hostnames
• exec
• ntp_u
• Discard
• nntp
• courier
• ctf

• daytime 
• shell
• netstat
• pop_3
• nnsp
• IRC
• pop_2
• printer
• tim_i
• pm_dump
• red_i
• netbios_ssn
• rje
• X11 
• urh_i
• http_8001
• aol

• S0
• S1
• S2 
• S3 
• SF
• SH 
• RSTR
• RSTO
• REJ
• RSTOS0
• OTH

3 70 11
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The training set of NSL-KDD contains 22 attack types, while the testing set contains
an additional 15 attack types. This attacks is divided into four main categories. Table
3.6 shows the attacks distribution in the NSL-KDD train and test sets.

Table 3.6: The attacks distribution of the NSL-KDD dataset

Category Attack type 
Training set
KDDTrain+

Testing set
KDDTest+

Normal Normal 67343 9711

Denial of Service 
(DoS)

Apache2 - 737

Back 956 359

Land 18 7

Neptune 41214 4657

Mailbomb - 293

Processtable - 685

Pod 201 41

Smurf 2646 665

Teardrop 892 12

Udpstorm - 2

Worm - 2

45927 7460

Probe

Ipsweep 3599 141

Mscan - 996

Nmap 1493 73

Portsweep 2931 157

Saint - 319

Satan 3633 735

11656 2421

Remote to Local
(R2L)

Ftp_write 8 3

Guess_passwd 53 1231

Httptunnel - 133

Imap 11 1

Multihop 7 18

Named - 17

Phf 4 2

Sendmail - 14

Snmpgetattack - 178

Snmpguess - 331

Spy 2 -

Warezclient 890 -

Warezmaster 20 944

Xlock - 9

Xsnoop - 4

995 2885

User to Root 
(U2R)

Buffer_overflow 30 20

Loadmodule 9 2

Perl 3 2

Ps - 15

Rootkit 10 13

Sqlattack - 2

Xterm - 13

52 67
Total 125973 22544
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3.3 Data Preprocessing

Data preprocessing is an essential step in the machine learning process as it takes
raw data and turns it into forms that are understandable and usable by machine learning
algorithms. Data preprocessing has many important steps, such as data cleaning, data
transformation, feature selection, feature encoding, and feature scaling.

3.3.1 Features Selection

After analyzing the data set’s features, we found a feature called num_outbound_cmds
that has a zero value for all the samples for both the train and test datasets. Hence, it
will be removed, because it does not give any difference for samples. As a result, the
feature set becomes 40 features.

3.3.2 Features Encoding

Only numerical values can be used in deep learning models. For this reason, the
categorical values of the NSL-KDD dataset must be converted to numerical values. For
that, we have chosen one-hot encoding as an encoding technique. For example the feature
protocol_type has three types of values, tcp, udp, and icmp, and encoding result is binary
vectors (1,0,0), (0,1,0) and (0,0,1), respectively. Service and flag features are treated in
the same way. As result of this process, 40-dimensional features map into 121-dimensional
features.

3.3.3 Features Scaling

In order to standardize the data range and reduce the computational power, we have
conducted feature scaling using the MinMax method 3.1 on each feature value to map it
in the range of 0 to 1.

xi =
xi −Min

Max−Min
(3.1)
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3.4 Methodology

In this section, we describe our proposed model for a network intrusion detection
system based on the Self-taught Learning (STL) approach [37], which consists of two
stages for the classification process. The first stage is feature representation: it transforms
the representation of the network traffic feature into another that allows us to better detect
data patterns. For this, we used unsupervised learning technique with a Convolutional
Autoencoder. The second stage is for the classification task. In this stage, the new feature
representation is used as an input. Figure 3.1 shows the two-stage of STL.
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Figure 3.1: The two stages of STL

3.4.1 Proposed Model

Feature representation is one of the most important stages in the development of
machine learning models, as it affects the accuracy and efficiency of the model. As quoted
by Jeff Hawkins: “ The key to artificial intelligence has always been the representation”
[17].
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For this reason, we choose unsupervised learning method that we used a convolutional
autoencoder, because it combined two properties, features reduction and features extrac-
tion, which allows to give better features representation. Based on this, we proposed the
model that appears in Figure 3.2. It contains the following steps:

KDDTest+

Features Selection

Features Encoding

Features Scaling

KDDTrain+  

Processed
KDDTrain+  

Processed
KDDTest+

Encoder Classifier

Model Training Model Evaluation

(2)

(3)

(4)

(5)

(1)

Figure 3.2: Block diagram of the proposed model

• Step 1: Dedicated to data preprocessing.

• Step 2: Training of convolutional autoencoder using unlabeled data.

• Step 3: Save the parameters of encoder and connect it to the classifier.

• Step 4: Training of classifier with labeled data.

• Step 5: Model evaluation using processed KDDTest+.
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3.4.2 Model Training

To obtain an effective intrusion detection model, we trained the model using a training
set that meets certain conditions in each training method. Table 1 shows a summary of
the used training methods.

Table 3.7: Model training methods

Training set 
used in step (2)

Training set 
used in step (4)

Method 1 All the training set samples All the training set samples

Method 2 Normal samples of the training set All the training set samples

Method 3 Attacks samples of the training set All the training set samples

3.5 Model Evaluation

3.5.1 Evaluation Metric

The performance of a network intrusion detection system is evaluated by its ability
to classify correctly the network traffic as normal or abnormal traffic, For this we have
used all performance measures such as Accuracy (AC), Precision (P), Recall (R), and
F1-measure (F). They depend on calculating the values of the confusion matrix as shown
in the Table 3.8.

Table 3.8: Confusion Matrix

Predicted class (y)

Positive Negative
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• True positive (TP): Abnormal samples are correctly classified as an abnormal.

• False positive (FP): Normal samples are wrongly classified as abnormal.

• True negative (TN): Normal samples are correctly classified as normal.

• False negative (FN): Abnormal samples are wrongly classified as normal.

Then, we calculate the performance measures from the following formulas :

• Accuracy (AC): Defined as the percentage of correctly classified samples over the
total number of samples, as shown in 3.2.

AC =
TP + TN

TP + FP + TN + FN
× 100% (3.2)

• Precision (P): Defined as the percentage of correct predictions of intrusions over
the total predicted intrusions, as shown in 3.3.

P =
TP

TP + FP
× 100% (3.3)

• Recall (R): Defined as the percentage of correct predictions over the total of actual
intrusion samples, as shown in 3.4.

R =
TP

TP + FN
× 100% (3.4)

• F1-measure (F): It is considered the most important metric of network intrusion
detection, where defined as the harmonic mean of precision and recall and represents
a balance between them, as shown in 3.5.

F1 =
2× P ×R

P +R
(3.5)
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3.5.2 Experimental results and discussion

In this part, we will present the various experimental results of all the proposed meth-
ods with their discussion.

3.5.2.1 Experimental Setup

The experimental environment is more important in preparing models and confirming
the results of theoretical studies. Our study used the following settings to implement and
test the proposed model.

• Hardware setup:

– CPU : Core i7-6800K 3.40GHz

– RAM : 16 GO

– GPU : NIVIDIA GeForce GTX 1660 6G

• Software setup:

– SE : Windows 10 Pro 64 Bits

– IDE : Microsoft Visual Studio Code with Jupyter Notebook Extension.

– Anaconda (version 3.0) : It is an integrated platform that contains various
packages used in data science and machine learning based on Python and R
language.

– Python (version 3.8.8) : Python is a high-level, public domain interpreted lan-
guage that is flexible and attempts to express programming concepts with as
few codes as possible. Python supports both object and procedural program-
ming, and has a large standard library. Python is an open source language,
supported by most operating systems.

– Tensorflow (version 2.3.0) : is a free and open-source software library for ma-
chine learning and artificial intelligence. It can be used across a range of tasks,
but has a particular focus on training and inference of deep neural networks.

– Keras (version 2.4.3) : Keras is a deep learning framework that makes it easy
to implement and test models.

525252



Chapter3: 3. EXPERIMENT 3.5. MODEL EVALUATION

3.5.2.2 Experimental results of the first method

Training Testing

Figure 3.3: Multi-classification confusion matrix of method 1

Training Testing

Figure 3.4: Binary-classification confusion matrix of method 1

Table 3.9: The results of the performance measures for method 1

Accuracy (%) Precision (%) Recall (%) F-Measure (%)

Training Testing Training Testing Training Testing Training Testing

Multi
Classification

99,31 75,98 95,98 76,87 83,60 55,20 89,36 64,26

Binary 
Classification

99,41 77,07 99,39 79,39 99,41 78,91 99,40 79,15
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3.5.2.3 Experimental results of the second method

Training Testing

Figure 3.5: Multi-classification confusion matrix of method 2

Training Testing

Figure 3.6: Binary-classification confusion matrix of method 2

Table 3.10: The results of the performance measures for method 2

Accuracy (%) Precision (%) Recall (%) F-Measure (%)

Training Testing Training Testing Training Testing Training Testing

Multi
Classification

99,41 78,45 91,31 59,44 88,45 58,20 89,86 58,81

Binary 
Classification

99,26 78,41 99,26 80,35 99,24 80,12 99,25 80,23
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3.5.2.4 Experimental results of the third method

Training Testing

Figure 3.7: Multi-classification confusion matrix of method 3

Training Testing

Figure 3.8: Binary-classification confusion matrix of method 3

Table 3.11: The results of the performance measures for method 3

Accuracy (%) Precision (%) Recall (%) F-Measure (%)

Training Testing Training Testing Training Testing Training Testing

Multi
Classification

99,22 76,45 89,79 77,90 88,24 56,63 89,00 65,58

Binary 
Classification

99,06 78,97 99,07 81,80 99,03 81,00 99,05 81,40
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3.5.2.5 Summary of the model evaluation

Table 3.12: Summary of model evaluation

Accuracy (%) Precision (%) Recall (%) F-Measure (%)

Training Testing Training Testing Training Testing Training Testing

M
u

lt
i-

C
la

ss
if

ic
at

io
n

Method 1 99,31 75,98 95,98 76,87 83,60 55,20 89,36 64,26

Method 2 99,41 78,45 91,31 59,44 88,45 58,20 89,86 58,81

Method 3 99,22 76,45 89,79 77,90 88,24 56,63 89,00 65,58

B
in

ar
y-

C
la

ss
if

ic
at

io
n

Method 1 99,41 77,07 99,39 79,39 99,41 78,91 99,40 79,15

Method 2 99,26 78,41 99,26 80,35 99,24 80,12 99,25 80,23

Method 3 99,06 78,97 99,07 81,80 99,03 81,00 99,05 81,40

3.5.2.6 Discussion

Depending on the experimental results, we note:

• The superiority of the second and third methods, which rely on training the model
using normal samples and abnormal samples, respectively.

• The weakness of the model in detecting R2L attacks, and this is because of the data
set, which contains 995 and 2885 samples of this attack for the training set, the
testing set, respectively.

• We note that the second method outperforms the third by 2.3% less in classifying
the anomaly as normal

Based on this, we adopt the proposed model with the second method as a reference
model for our work.
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3.6 Conclusion

In this chapter, we discussed our model and the experimental results of the various
methods used for training it. The experimental results show that our model achieved a
classification accuracy of 78.41%, and 78.45%, for 2-class, and 5-class, respectively.
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CONCLUSION

In an open and digitalized era, network security is a primordial issue for every orga-
nization. Thus, providing security solutions becomes very urgent and crucial. Intrusion
detection systems aim to predict attacks and ensure information security and integrity;
they are one alternative among others that protect networks from various dangerous
threats.

In this work, we have proposed an anomaly network intrusion detection based system.
The model complies with self-taught deep learning framework and uses a convolutional
auto-encoder to get a better feature representation of the input data. We found that
restricting the training model in the first stage of the auto-encoder to the normal samples
only gave fairly good results. This offers to our model more flexibility and compatibility
with the most common security policies. The experimental results show that the proposed
model gives a good accuracy of 78.41 % for both binary and multi-class classification.

The present work can be further improved in the future. We report some research
directions. Firstly, the use of the few-shot learning in the second stage of self-taught learn-
ing. Secondly, the use of intrusion embedding with a self-attention mechanism.Finally,
the Investigation of collaborative IDS by combining work load and knowledge of multiples
IDSs to inspect the network traffic.
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