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List of symbols

We use the following notations throughout this thesis

Acronyms

e FC: Fractional calculus.

BVP : Boundary value problem.

FBVP : Fractional boundary value problem.

FIBVP :Fractional impulsive boundary value problem.

FDEswP-L: The fractional differential equations with p-Laplacien operator.

Notations
e IN : Set of natural numbers.
* INp : Set of positive integers n.
* Z : Set of integer z.
* Zy : Set of nonegative integer z.
¢ R : Set of real numbers.
* R, : Set of nonegative real numbers.
¢ C: Set of complex numbres.
¢ ¢c: belongs to.
* max : Maximum.
* min : Minimum.

e n!: Factorial (n); n € IN : The product of all the integers from 1 to n.

v



Re(z) : The real part of number z € C.

Im(z) : The imaginary part of number z € C.

I'(.) : Gamma function.

(z)n : Pochhammer symbol, defined for z € C and n € INj.

B(.,.) : Beta function.

2Fi(.,.;.;.) : Gauss hypergemetric function.

I7, : The Riemann-Liouville fractional integral of order a > 0.

RLDZ‘+ : The fractional derivative of order & > 0 in the sense of Riemann-Liouville.
Dy : The fractional derivative of orde a > 0 in the sense of Caputo.

Z v :The Katugampola fractional integral of order « > 0, p > 0.

WKD;& : The Katugampola fractional derivative(KIFID) of order « > 0, p > 0.
PCKDE, :The Caputo-Katugampola fractional derivative (CKIFID) of order & > 0, p > 0.

%Z% : The y— Riemann-Liouville (y— RL) fractional integral of order a with respect to
another function .

¥,D%, : The — Riemann-Liouville (y— RL) fractional derivative order & € (n —1,n) with
respect to another function .

w;Cfol@ The ¢p— Caputo (p— C) fractional derivative order « € (n — 1, n) with respect to
another function .

C(J) : Space of continuous functions on J.

C*(J) : Space of positive continuous functions on J.

C"(]) : Space of n time continuously. differentiable functions on J.

C;(J) : Space of n continuously differentiable functions on ], with respect to d,.
AC(]) : Space of absolutely continuous functions on J.

L(a, T) : space of Lebesgue integrable functions on (a, T).

LP(a, T) : space of measurable functions u with | u |V belongs to L(a, T), p € [1, +0).

L*(a, T): Space of functions u that are essentially bounded on (a, T).
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General Introduction

The boundary value problems is considered as a subject which has a long and enriched history
ranging from its theoretical (existence and uniqueness of solutions, the multiplicity of solutions, ...)
development to the methods and techniques of finding or approximating their solutions. Boundary
value problems often arise naturally in a variety of applied fields and can be categorized as well
posed and ill posed, local and nonlocal, linear and nonlinear, singular and nonsingular, and free and
fixed problems. Ordinary, partial, functional, fractional, and integrodifferential equations together
with the boundary data varying from two-point and periodic to multipoint and nonlocal boundary
conditions constitute interesting and important classes of boundary value problems.

Equations with a p-Laplacian operators arises in the modeling of different physical and natural
phenomena, non-Newtonian mechanics, nonlinear elasticity and glaciology, combustion theory,
population biology, nonlinear flow laws and so on. Torres [82] studied the existence of at least three
positive solutions by using Leggett-Williams fixed point theorem. Liang et al. [53], used the fixed
point theorem of Avery and Henderson to show the existence of at least two positive solutions. Zhao,
Wang and Ge [56], studied the existence of at least three positive solutions by using Leggett-Williams
tixed point theorem. Chai [25], obtain results for the existence of at least one nonnegative solution
and two positive solutions by using fixed point theorem on cone. Su et al. [72], studied the existence
of one and two positive solution by using the fixed point index theory. Su [71], studied the existence
of one and two positive solution by using the method of defining operator by the reverse function of
Green function and the fixed-point index theory. Tang et al. [81], studied the existence of positive
solutions of fractional differential equation with p-laplacian by using the coincidence degree theory.

Fractional calculus is a generalization of ordinary differential equations and integration to
arbitrary non integer orders. Recently, the number of researches dealing with differential equations
with fractional derivatives has been increased so that the task of studying this type of equations is
more important because of its multiple applications in various branches of science such as, physics,
chemistry, chemical physics, electrical networks, control of dynamic systems, engineering, biological
science, optics and signal processing, where many relations and key laws ruling between the variables
appear as form of differential equations with fractional derivatives. For more explanations and
examples, we refer the reader to the monographs [1, 2, 3, 44, 45, 59, 60, 62, 64, 70, 84], the papers
[4, 5, 6] and the references therein.
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This thesis is organized as follows:
Chabter 1 contains only, necessary notations, definitions and basic lemmas that will be used in the
proofs of our main results.

In Chapter 2 we look at the existence and multiplicity of concave positive solutions for a boundary
value problem for two-sided fractional differential equations involving the Caputo derivative:

P (@ (D () +a(t)f(u(h)) =0, 0<t<1, (0.1)
u(0) — By (D§-u(0)) =0, u"(0) =0, w'(1)— () = A, (0.2)
D§u(1) =0, [, (D.u(0))]' =0, [p, (Du(1)]" =0, (0.3)

where f : Ry -+ R, Bp: R —= R, a:(0,1) = Ry are given continuous functions, Dg., Dﬁ
respectively; the left-sided and the right-sided Caputo fractional derivatives with 2 < §,a <3 and
¢p(s) is p-Laplacian operator: i.e., ¢,(s) = [s|P~2s, p > 1, ((13;7)71 = ¢q, %—F% =1,17€(0,1), pe
[0,1) are two arbitrary constants and A € R} := [0, 00) is a parameter.

By means of the Leggett-Williams fixed point theorem, we obtain the existence of at least three
solutions. Some illustrative examples are presented in the last section of this chapter.

In Chapter 3 we consider the following fractional boundary value problem (FBVP):

pz;CKD;TE (dp (PKDTLq)) (7) + 1(T)p(q(T)) =0, a<T<],
(p1 CKfofl ) — 0,
5§1q(ﬁ) =0, (0.4)
85,q(2) = uéy,q(17) + A,

PUEDTL (1) = —d,, [y (PPEDIL)] (2) = &, [y (KDL q)] (1) =0,
where PUCKDT and KD, (pq,p, € R\ {1}) are the right and left sided Caputo-Katugampola
fractional derivatives (CKIFID), 2 < 01,02 < 3, ¢, is the pL operator, i.e., $,(5) = |E[P~28, p > 1,

(sk: 1pd £
P dr /)’

F, is a continuous even function, g, / are continuous and positive. 7 € (4,1),0 <y <1,and A > 0.

Under some sufficient conditions, the existence of at least one, two and three positive solutions
for the BVP (0.4) are ensuring.

The least Chapter 4 deals with the existence and uniqueness results for boundary-value problem
of following nonlinear {—Caputo fractional impulsive differential equations:

vGDE (p(t)pyp (PWGDYu)) (1) + () (u(t)) = f(tu(t)) a<t<T,
A(u(t) = I (u(t), Ady (WGD ) (k) = I2 (u (b)), k=1,2,...,m (©05)

u(a) = uo+ A [T p(0) | w7

. DR u(T) =
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where p,p* > 1,0 < «,B,7 =1, ¢, is a p -Laplacian operator, s(t), p(t) and 7(t) € C([a, T|,RY),
feC(laT) xR,R), wup,u;,A€R, fork=1,2,...,mi=1,2, I,i EC(IRR),a=t<th < <
e <o <ty <twpr=T.Au(ty) =u () —u(t;),u(t)) and u (f, ) denote the right and the left
limits of u(t) at t = t; (k =1,2,...,m) respectively and A¢,, (¥"$D%, u) (t) has a similar meaning
for ¢, (YGD% u) (ty).

This chapter focus to deals with the existence and uniqueness results for boundary-value problem
of nonlinear p—Caputo fractional impulsive differential equations with celebrated p-Laplacian
operator via of some celebrated fixed theorems, a new results are given.



Chapter 1

Preliminaries and background materials

This chapter is devoted to necessary notations, definitions and basic lemmas that will be used in the
proofs of our main results. We also present fixed point theorems which are crucial in our results
regarding fractional differential equations.

1.1 Functional spaces

In addition to the notations, we present some functional spaces. Let R = (—oco,+00), | = [a,T| C
(0,00) and p > 0.

1. [a] is the largest integer less than or equal to a. Throughout the paper, we use n = [a] if & is an
integer and n = [a] 4 1 otherwise.

2. CH(J)={y e C(]), y(t) >0 Vte J}.

Definition 1.1.1. [44, 45] C(J) denotes the Banach space of continuous functions & on | endowed
with the norm
Ih]lc = max |h(x)].
xej

Analogously, C"*(]) denote the spaces of n times continuously differentiable functions on J.
C;(J) is the Banach space of n continuously differentiable functions on ], with respect to Jp:

Ci()) = {h €C()): dkhe C()) k= 0,1,...,n},

endowed with the norm .
[hllcy = kX% 165h]lc.

Denote by L'(a, T) or (L(a, T)) the Banach space of Lebesgue integrable functions & with the norm

T
Inlle = [ In(lat.

8
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and we denote L?(a, T) the space of Lebesgue integrable functions on (a, T) where |h|P belongs to
L'(a, T), endowed with the norm

11z = 1A ]2 = [/jlh(t)lpdt] -

When p = oo, L®(a, T) is the space of all functions h that are essentially bounded on | with
essential supremum

||| = esssup |h(t)| = inf{c > 0: |h(t)| < c for a.e.t}.
te]

Definition 1.1.2 (Function space [44, 45]). For ¢ € R, consider the Banach space

M (a,T) = {h:]—)lR: 1] pgr = (/T £ h(E) [P f)” < +oo}.

In particular, if ¢ = 1/p then the space M/ (a, T) coincides with the L (a, T)-space:
M (a,T) = LP(a,T).

Remark 1.1.3. If ce Rf and T < (pc)# then C(J) — ME(]) and |1l pgp < llBllc, Yh € C(]).

Definition 1.1.4. [44, 45, 46] A function u is said absolutely continuous on ] if for all € > 0 there
exists a number v > 0 such that; for all finite partition [a;, b;]?_; in ] then Y}, (bx — ax) < v implies

that Yp 4 |f(b) — f(ax)| <e
We denote by AC(J) (or AC!(])) the space of all absolutely continuous functions defined on J. It
is well known that AC(]) coincides with the space of primitives of Lebesgue summable functions:

heAC(]) & h(t) =c+ /t)((s)ds, x € LY(a,T), (1.1.1)

and so an absolutely continuous function  has a summable derivative /' (t) = x(t) almost everywhere
on J. Thus (1.1.1) yields
W(t) = x(t) and c = h(a).

Definition 1.1.5. [44, 45] For n € IN* we denote by AC"(J) the space of functions & which have
continuous derivatives up to order n — 1 on | such that h(n=1) belongs to AC(]):

AC™(]) = {h e C" () s hD ¢ AC(])}.

The space AC"(]) consists of those and only those functions & which can be represented in the form

h(t) :( 1 )!/at(t—s)”_lx(s)ds+§cktk, (1.1.2)

n—1

where x € L'(a,T),cx (k=1,...,n—1) € R.
It follows from (1.1.2) that
hk) (a)

x(t) = k" (t) and ¢, = k!
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Definition 1.1.6. [44, 15, 16] Let ¢ be strictly increasing and n times differentiable function on J, then

ACl(])=1<u:] —-R and 5[n71]u € AC(]), 5[n71}u = (-12-4) 4! denotes the Banach space of n
¥ ¥ ¥ g d P

times absolutely continuous with respect to the strictly increasing differentiable function ¢.

In particular, if ¢(t) = t then the space ACj(]) coincides with the AC"(])-space:
ACy(J) = AC™(]).

Definition 1.1.7 (PC-Function space). For m € IN* we consider finite collections of intervals Jo =
[a;t1], J1 = (tk, txr1), included in a fixed interval |, with k = 1,2,...,m,a=t) < f) < --- < f <
-+ <ty < tyy1 = T. One can see that | = U}_; Jk-

Let PC(J,R) ={u:] > R:u € C(Jy,R) fork=1,2,...,m and there exist u () and u (t, ) at
t =t with u (t) =u ()}

Then PC(J,R) is a Banach space endowed with the norm |[u|| = sup,; [u(t)].

Definition 1.1.8 (Heaviside function H). We define the Heaviside function as follows

1 ift>0

H(t) = (1.1.3)
0  elseif

Proposition 1.1.9. Let u be a piecewise function (u € PC(J,R)), t1,t2,--- ,tx fork =1,2,--- ,m the fixed
moments of impulsive effect and o* = u(t}) — u(t, ) the magnitude and direction of the impulsive effect at ty.
Then u can be written as the sum of a continuous function g and the Heaviside functions.

k
u(t) =g(t) +) o H(t - ty), (1.1.4)
j=0

where ¢° = 0.

1.2 Some basic special functions

Here we introduce some definitions and the important of some special symbols and functions which
are used in fractional calculus. The Gamma function plays a basic role of the generalized factorial and
the Beta function occur when we are computing the fractional derivatives of some power functions.

1.2.1 The Gamma function

Definition 1.2.1 ([63, 70]). The gamma-function I'(z) is defined by the integral.
—+oc0
I'(z) :/ le~tdt, (1.2.1)
0

which converges in the right half of the complex plane, that is, Re(z) > 0. One can see that, the
gamma-function I'(z) is defined as the Euler integral of the second kind, the Mellin transform of the
exponential function.
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t

When we substitute ™" in (1.2.1) by the well-known limit

t
et = lim (1 - >
n—oo n

and then use n-times integration by parts, we obtain the following limit definition of the Gamma
function (1.2.1)

1172
I'(z) = lim e

n—o0 (2),41

where (z), is the Pochhammer symbol, defined for complex z € C and nonnegative integer n € N

by this equation

7

(2)n=2z(z4+1)(z+2)---(z+n-1), (2)0=1. (1.2.2)
The simplest properties of the gamma function is the reduction formula that is
I'(z4+1) =2zT(z), Re(z) >0 (1.2.3)

it is obtained from (1.2.1) by integration by parts. By using this simplest properties, one can see that,
the Euler gamma function has an extension in the left half of the complex plane (Re(z) < 0) given by

The formula (1.2.4) immediately implies that, the Euler gamma function is analytic everywhere in

, (Re(z) > —n; n€Ny;, z¢ Z). (1.2.4)

the complex plane C except negative integer numbers, wich are the simple poles of I'(z) in the sense
of complex analysis.
For z = n, equations (1.2.2) and (1.2.4) yield

I'(n+1)= (1), =n!, neNy, (1.2.5)

as usual 0! = 1.

1.2.2 The beta function

Definition 1.2.2 ([63, 70]). The beta function B(z,z’) is defined by the first kind of the Euler integral:

B(z,7Z') = /01 £(1—t)7dt, (1.2.6)

wher Re(z) > 0,Re(z’) > 0, while it is conditionally convergent for Re(z) = 0 or Re(z’) =0 (z # 0,
z # 0). For more explication this integral

1—e€

B(z,7) = / £(1— 17 dt,
0

has a limit when € — 0.
We have also that, the function beta has a relation with the gamma functions by this formula:

[(z)[(z)

e = Tera)

(z.2' ¢ Zy)
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1.2.3 The Gauss hypergeometric function

Definition 1.2.3. A function is defined in the unit disk as the sum of the hypergeometric series

oy (a)k(a)y 2
oF1 (a1, a2;03;2) = kg(;) T K (1.2.7)

is called the Gauss hypergeometric function, where | z |< 1; 41,4, € C, a3 € C\ Z; and (.)x is the
Pochhammer symbol (1.2.2).

The series in (1.2.7) is convergent for | z |[< 1 and for | z |= 1, Re(as — a; — az) > 0, when
| z|=1, —1 < Re(az —a; —ay) = 0 it is conditionally convergent. For other values of z, the Gauss
hypergeometric function is defined as an analytic continuation of the series (1.2.7). One such analytic
continuation is given by the follow Euler integral representation:

1

2Fi(a1,a0;03;2) = Blay, @ — @) /0

1 taz—l(l o t)a3—a2—1
(1—zt)m

dt, 0 < Re(az) < Re(ay), | arg(l —z) |< (x.2.8)

Properties 1.2.4 ([63, 70]). The Gauss hypergeometric function has some simplest properties are
follow:

1.
ZPl(ﬂl, 02}03;2) :ZF](QZ, al;a3;z),
2.
2P1(‘11/‘12/' a3;0) =2 F1(0,a2; a3;Z) =1.
> 113 3 .
2R (s,55722 ) =R (11522 m:%.
2’22 2 .
* 1 3 (z)
1,3, ) _ arctan(z)
o (2,1,2, z) —.
5.
ooy 1
Fy (a1, a2;a0;z) = T

1.2.4 Mittag-Leffler Functions

In this subsection we present the definitions and some properties of two classical Mittag-Leffler
functions. For more detailed information may be found in [41, 57, 63, 70, 83].
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Definition 1.2.5. The Mittag-Leffler function of one parameters is an entire function introduced by
Mittag-Leffler [57], is defined by the series

0 Zk
Eu(z) = k;o Tk 1) (z € C,Re(a) > 0) (1.2.9)
it is a direct generalization of the exponential function exp(x) and plays a major role in fractional
calculus.

Definition 1.2.6. [70, 83] The Mittag-Leffler function Eup (z), generalizing the one in (1.2.9), is defined
by

00 k

Enp(z) = kgo r(a;w) (z,B € C,Re(a) > 0) (1.2.10)

Remark 1.2.7. For B = 1 we get (1.2.9).
From (1.2.10) we have that

Eup(z) = - +2zEuip(2). (1.2.11)

; ;
— =182

o 0=186=3

—0=18p4

0=14p=6
0=141428 =13

(a) Mittag-Leffler function of one parameter  (b) Mittag-Leffler function of tow parameters

FIGURE 1.1 — Mittag-Leffler functions of one parameter and tow parameters

1.3 Fractional calculus

Fractional calculus (FC) generalizes better than integer-order integration and differentiation concepts
to an arbitrary(real or complex) order[62, 70]. Fractional calculus is not a new topic; actually, it has
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almost the same history as that of the integer calculus. Since the occurrence of fractional or fractional-
order derivative, the theories of fractional calculus fractional derivative plus fractional integral has
undergone a significant and even heated development, which has been primarily contributed by
pure but not applied mathematicians; the reader can refer to an encyclopedic book [414] and many
references cited therein.

In the last few decades, however, applied scientists and engineers realized the need to the differ-
ential equations with fractional derivative which provided a natural framework for the discussion of
the solution to various kinds of real problems modeled by the aid of fractional derivative, such as
viscoelastic systems, signal processing, diffusion processes, control processing, fractional stochastic
systems, allometry in biology and ecology [16, 18, 21, 12, 43, 66, 85].

Fractional calculus is considered one of the most emerging areas of investigation and has attracted
the attention of many researchers over the last few decades as it is a solid and fast-growing work
both in theory and in its applications [59, 62]. Different from classical or integer-order derivative,
there are several kinds of definitions for fractional derivatives. These definitions are generally not
equivalent to each other. In this section, we present the necessary definitions and lemmas from
fractional calculus theory. These definitions and properties can be found in the recent literature

[ 4 4 /4 4 4 4 ]‘

1.3.1 Various approaches to fractional derivation

More than 300 years after the discovery of fractional calculus, we are only beginning to overcome the
difficulties.

Many mathematicians have studied the question "whether the meaning of a derivative to an
integer order n could be extended to still be valid when 7 is not an integer" which was first raised
by L'Hopital on September 30" ,1695. On that day, in a letter to Leibniz, he posed a question
about D"x/Dx", Leibniz’s notation for the n'" derivative of the linear function f(x) = x. L'Hopital
curiously asked what the result would be if n = . Leibniz responded that it would be "an apparent
paradox, from which one day useful consequences will be drawn," [59], in particular, Euler (1730),
Lacroix(1819), Fourier (1822), Abel (1823), Liouville (1832), Riemann (1847) and so on.

Different approaches have been used to generalize the notion of fractional derivation.

1.3.1.1 Riemann-Liouville and Caputo fractional derivatives approaches

Here, we focus on two of which are the most popular ones, the Riemann-Liouville and the Caputo
fractional derivatives since they are the most used ones in applications. We will formulate the
conditions of their equivalence and derive the most important properties.

Definition 1.3.1. [44, 45] The Riemann-Liouville fractional integral 7, and I}_ of order a > 0 of a
function u € L!([a, T]) are defined by:

INou(t) = F(llx) /at(t —5)* u(s)ds, (1.3.1)
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and . .
I-u(t) = 7 /t (s — )" Lu(s)ds,

provided the integral exists (respectively). Here I'(«) is the Gamma function (1.2.1). These integrals
are called the left-sided and the right-sided fractional integrals.

Definition (1.3.1) can be obtained in several ways. We shall consider one approach that uses the
convolution kernel of order « (1.3.2).

H", denots the convolution kernel of order « € R™ for fractional integrals, is defined by

ax—1

HY(t) = ;”(;) €L (RY) (1.3.2)

where the suffix + is just denoting that the function is vanishing for t < a that is

a1 _ (t— u)"‘*l, t>a
ar 0, t<a

We agree to mention this function as Gel’fand-Shilov function of order « who have treated it in their
book [Gel’fand and Shilov (1964)].

The fractional integral (1.3.1) (or the left-sided Riemann-Liouville integral) with fractional order
a € RYof function u(t) is defined as

l"(luc) /at(t — 1) ly(7)dr.

Ifou(t) = H* xu(t) =

H* has an important convolution property (or semigroup property), that is, H* * Hf = H"*f for
arbitrary « > 0 and 8 > 0.

Examples 1.3.2. We consider the power functions u; = (t —a)f™1, up = (T —t)P71, uzg = (t -
a)P~ (T —t)7"1and uy = (t—a)f~1(t —c)*"!, where B > 0,7 € R and ¢ < a. Then we have
respectively

on(t) = gy (t - oy (133)
f-ua(t) = g s (T = )8 (139
I us(t) = lm(t — )t (1 — T BB Z) (1.3.5)
If uy(t) = r(;(f_){x)(t — ,1)3%13711:1 <1 —vBa+pB; —z : Z) (1.3.6)

The formulae (1.3.3)and (1.3.4) can be proved by direct evaluation, the formula (1.3.5)and (1.3.6) can
be proved by simple transformations of the Euler representation (1.2.8).
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Definition 1.3.3. [44, 45] The fractional derivatives of a function u € C([a, T],R),n € INj in the sense
of Riemann-Liouville (RED% u) (t), (RED%_u) (t), of order a, 0 < n —1 < a < n are defined by:

dr - 1 d" gt ufs)
RL _ = n—a - - = [ A
< Du+1/l> (t) = dm at M(t) F(n _ IX) dm /{1 (t _ S)lx—n-i-l dS’
and oL 4" (_1)n dr T u(s)
o _ (_ n, n—u __ 7 RS
( DT,L!> (f) = ( 1) dm IT, u(t) 1-'(” _ Dc) d /t (S — t)a—n—i—l ds,
where n = [a] + 1, and [«] denotes the integer part of real number «.

Examples 1.3.4. The fractional derivatives in the sense of Riemann-Liouville for the power functions
uq and u; is given respectively by:

(2] 6= gyt = 0+

(RLD%LLQ) (t) — r(;(,B) (T— t)ﬁfafl.

—zx)

In particular, if § =1 and & = 0, then the Riemann-Liouville fractional derivatives of a constant are,
in general, not equal to zero:

(fD31) () = =0 (FDF1) (0 = (g (T=07 (39)

Forf=a—i,i=1,2,---,n we have that

(RLDZ‘+(t - a)“-i) (t) =0, (RLDD;_(t - a)“_l) () =0 (13.8)

Properties 1.3.5 ([44, 62]). Letn —1 <a <n

(RLDg‘+u) () = 0= u(t) = ici(t — )", ¢ €R, (1.3.9)
i=1
(RLD”T‘,u> () =0=u(t) = i (T—H)%" d; eR. (1.3.10)

i=1
Lemma 1.3.6 ([44, 45, 62, 70]). Leta > > 0, u € LP([a,T]) (p € [1,00)) then :
(1) The Riemann-Liouville fractional integration operators and the derivatives are linear.
(2) The fractional integration operators 1% and I%_ are bounded in L¥ ([a, T]).
(3) 1% 1P u(t) = I'TPu(t) and 1218 u(t) = IFPu(r).

(4) RID* 1% u(t) = u(t) and DS_I% u(t) = u(t).
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(5) RIDP 1% u(t) = 17 Pu(t) and R'DE 1% u(t) = I3-Pu(t).

at a T

Proof. See [70] O

Lemma 1.3.7 ([44, 45, 62, 70]). Let &« > 0, n = [a] + 1. Ifu € L'([a, T)) and Luy_q, Ruy—o € AC"([a, T)),
then

RL n
;ﬂ( D2‘+u(t)> =u(t)+ ), ”}“a k=1 (1.3.11)

RL n
I&’L( D"}u(t)) =u(t)+) ?(zx p— : (1.3.12)

hold almost everywhere on [a, T], where Luy,_, and Ru,,_ are the Reimann-Liouville left- sided and right-sided
fractional integrals of order n — a > 0 of the function u.

Definition 1.3.8 ([44, 70]). The fractional derivatives of a function u € C"([a, T],R) (or AC"([a, T],R),n €
Np in the sense of Caputo (D% u) (t), (D%_u) (t), of order o, 0 < n —1 < & < n are defined by:

t u(”) S

and
—1)" u (s
(D) () = (-1 Bt = oV [T

where n = [a] + 1.

Remark 1.3.9 ([44, 45, 62, 70]). Let u € AC"([a,T|,R), then the Caputo fractional derivatives
(D% u) (t), (D%_u) (t), of order a, 0 < n —1 < a < n exist almost everywhere on [a, T]

Remark 1.3.10. By Definition 1.3.8, under natural conditions on the function u, for x — n, the Caputo
derivative becomes a conventional n-th derivative of the function u.

Remark 1.3.11 ([44, 45, 62, 70]). Let u € C"([a,T],R), then the Caputo fractional derivatives
(D% u) (t), (D%_u) (t), of order a, 0 < n —1 < a < n are continuous. Moreover,

(D%u) (a) = (D§-u) (T) = 0. (1:313)

Remark 1.3.12 ([44, 45, 62, 70]). By Definition 1.3.8, under natural conditions on the function u,
the Caputo derivatives (D% u) (t), (D% u) (t), of order a, have properties similar to those of the
Riemann-Liouville fractional derivatives (RED% u) (t), (RED%_u) (), given in Lemma 1.3.7 , but
different from those in (1.3.7), (1.3.8)
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Remark 1.3.13 ([44, 45, 62, 70]). As a basic example, let &, p > 0. Then the following relations hold:

(D) (1) = (4 gpat gy

Gy
(Df-10) (1) = s (T= 15, pm

In particular D%, (t —a)* = 0 and D§_ (T —t)* = 0,u = 0,1,...,n — 1, then the Caputo fractional
derivatives of a constant are, in general, equal to zero:

(DS1) (1) = (D$-1) () = 0. (1:3.14)
Lemma 1.3.14 ([44, 45, 62, 70]). Let « > B > 0, then
(1) (D% I%u) (t) = u(t) and (DS 1% u) (t) =u(t), wueL®([a,T]) orue C(]).
() D Igou(t) = I Pu(h), we L) ((a,T).
From the definition of the Caputo derivative and Remark 1.3.13 we can obtain the following
statement.

Lemma 1.3.15 ([44, 45, 62, 70]). Let &« > 0. If we assume u € C"(a,T) N L(a, T), then the fractional
differential equation
Da*”( ) =0

has at least one solution
u(t)=Co+Ci(t—a)+Co(t—a)*+---+Cpa(t—a)"!, CGER,i=012,...,n—1,
where n is the smallest integer greater than or equal to .

Lemma 1.3.16 ([44, 45, 62, 70]). Let « > 0, n = [a] + 1. If u € C"(0,1), then

I+ <D0+u ) )+ Z Cet*, CreR. (1.3.15)

I (Dqt u(t ) )+ Z YD(1— 1), Dy €R. (1.3.16)

Lemma 1.3.17 ([44, 45, 62, 70]). Let & > 0, and n = [a] + 1. If D% u(t) € C[0,1], then u(t) €
c"1(]0,1]).

Proof. Let h(t) € C[0,1], such that “D%, u(t) = h(t). From Lemma 1.3.16, we have
n—1
u(t) = I5h(t) + Y Gt*, CreR.

It is easy to check that u(t) € C"~1([0,1]). O

Next, we recall the Katugampola (K) and Caputo-Katugampola (CK) fractional integrals and
derivatives [50].
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1.3.1.2 Katugampola and Caputo-Katugampola fractional derivatives approaches

We present here basic definitions and lemmas from fractional calculus theory (See [44, 50, 59, 62, 64,
, 75] and references therein. Now, we recall the Katugampola and Caputo-Katugampola fractional
integrals and derivatives [50].

Definition 1.3.18. The Katugampola left-sided **'T¢ and right-sided * T7 fractional integrals of non
integer order « > 0 of a function q € MY (a,1) are defined by

1-7 T
() = Py [ @ - a@de T,

pl—a

"R = 1 /Tl(é" -7 a(9) g, T<

The Katugampola fractional derivatives (KIFID) of q are defined by

"KDi.q(r) = &5 (P q) (1)

1-n+o "ot
B h (Tl“’ff) | @ =i g () g,

KDL q(T) = (=1)"d) (P 7) q(7)
_ (_1)np17n+0 1-p d Vl/z P p\n—o—1zp—1
_W T dr T(C 7°) ¢Pq(¢)de.
When « is integer, we consider the ordinary definition.

In the following, we present some properties for left-sided integrals and derivatives. But, the
same properties are also true for the right-sided ones.

Lemma 1.3.19. Let r € R, ay,a0,p > 0,n € Ny, and 1 < p < oo. Then, on MVP(a,1), we have the
following.%i) P Mf (a,1) — ML (a,1); i) PKDS qzd PW]II”{ are lineﬁr,‘ iii) KDY, PN = T,
PKDY (PT2q) (T) = PAIR T q(T) when ap > ay; iv) PUIY o PR = AT,

Definition 1.3.20. Let n € Ny. The Caputo-Katugampola fractional derivatives (CKIFID) of a function
q € C([a,1]) (or € AC}([a,1])) are defined by #KD%, q(7) = p;ﬁllg_”églq(r) and

PEKDEq(T) = (~1)" (7 enq(T)) -
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Lemma 1.3.21. The CKIFD of a function q € C§(]) (or € AC}(])) can also be written as

Lon k
]
N k
\ (lp ;Tp> ] . (1.3.18)

Lemma 1.3.22. Let ap > a1 >0, q € MV (a,1), q € ACH(]) or C}(]). Then we have

P;CKD;(}r (p;ﬁ+1110<‘2q(T)) — p;ﬁﬂgrmq(,f)/

n—1 gk
PKDE q(1) = (DL ) [q(f) -y 5P?£T)

k=0

n—1 k T
p"CK'D?‘,q(T) — (p;KD?,) [q(r) B l;)(—l)képcllcf )

and for some real constants Ny and M,

ety (0 CKomi n-l 0 — 4P\ K
p'a+]II<1 (p'CKDaiCO (1) =q(7) = ) Mk ( 0 > , (1.3.19)
k=0
p;i 1 [ p;,CK oy . P —TP ¢
Iy < i Dz—Q) (1) =q(t) — I;)Mk < 5 > . (1.3.20)

Proposition 1.3.23. We have the following properties for Caputo-Katugampola fractional derivative approach.
When p = 1, the Caputo-Katugampola fractional derivative approach coincides with Caputo fractional
derivative approach.

When p — 07, the Caputo-Katugampola fractional derivative approach coincides with Caputo-Hadamard
fractional derivative approach.

Lemma 1.3.24. [50] If *“KDJ1q € C(]), then q € C7(]).

1.3.1.3 The Riemann-Liouville and Caputo fractional derivatives approaches that involve a func-
tion ¢

We present here basic, a general definitions and lemmas form of fractional calculus theory that
involves a function 1. We can easily see that under suitable choices of 1, we obtain some well-known
fractional operators, like the Riemann-Liouville, the Caputo, the Hadamard, the Katugampola, or the
Erdelyi-Kober fractional derivatives. (See [11, 14, 48, 50, 54, 59, 62, 64, 70] and references therein).

There are some definitions in fractional calculus which are very widely used and have importance
in proving various results of fractional calculus. In this section, We will see a new class of integrals
and fractional derivatives. Due to the huge amount of definitions, i.e., fractional operators, the
following definition is a special approach when the kernel is unknown, involving a function . That
generalized all definitions of fractional integral and fractional differential operators that we use
throughout this thesis.

Now, we recall the definitions and some properties of the y-Riemann-Liouville (-RL) and the
yp-Caputo (1-C) fractional fractional derivative of a function. Some of these definitions and results
were given in Samko et al [70], Almeida [11].
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Definition 1.3.25. For « > 0, we define the left-sided and right-sided )— Riemann-Liouville (¢y— RL)
fractional integral respective of order « for an integrable function u : ] — R with respect to another
function ¥ as follows

W) = i [ W E@O 9 uo)ds

1 T
WIEu(t) = g [ Y OWLE) — p(0) u(s)ds

where I' is the special Euler’s function and ¥ : | — R is strictly increasing differentiable function
such that ¢/(t) #0, forall t € J.

Definition 1.3.26. Let y € C"( J,R) be a function such that ¢ is strictly increasing and ¢'(t) # 0,
for all t € J. The left-sided and right-sided — Riemann-Liouville (»— RL) fractional derivative
respective of a function u : ] — R of order & € (n — 1, n) are defined by

1 d\"y ..
lPthJru(t) - <1I]/(t)dt> 47tI:+ u(t),t > a,
-1 d\"
i Dy-u(t) = (lV(t)dt) WTEu(t), t < T,

provided the right- side and left- side integrals are pointwise defined on | .

Definition 1.3.27. Let n € Ny and let ¢, u € C"(],R) be two functions such that ¢ is increasing
and ¢/ (t) # 0, for all t € J. The left-sided and right-sided ¢ -Caputo (¢ — C) fractional derivatives
respective of u of order « are defined by

YD u(t) =Ty oy u(t)

PEDE_u(t) =HThot (~1)"s) u(t)

where n = [a] + 1 for « ¢ N, n = a for « € IN. and 51[:]14(1‘) = (lp,l(t)%)n u(t).

Lemma 1.3.28. The left-sided and right-sided 1 -Caputo ( — C) fractional derivatives respective of order a
of u € C"(J) can also be determined as:

n—1 5[“ t
Dl =05 ule)— T i i - w(@)"] : (1.3.21)
k=0 :

lp’.ctD%‘u M(t) = wﬂ?"f,

u(t) = ¥ (~1 L () lp(t))k] . (1.3.22)

k=0



1.4. Some motivations for using fractional calculus 22

In the following, we present some properties for left-sided integrals and derivatives. But, the
same properties are also true for the right-sided ones.

Lemma 1.3.29. Let a, f > 0.

o Ifu € L'(],R), then
‘pr;"+¢tIf+u(t) = tI:fﬁu(t), ae. t €] (1.3.23)

e Ifu € C(],R), then

‘/’tIg‘+‘l’tIf+u(t) = ‘l’tIZfﬁu(t) and VSD T u(t) = u(t),t €] (1.3.24)
e IfueC"'(J,R),n—1< a < n. Then
=y (@)

WL DR () = u(t) = ) () — (), te] (13.25)
k=0 ’

1.4 Some motivations for using fractional calculus

The fractional calculus adds powerful information to the classical calculus, with a more accurate
description of certain natural phenomena, nevertheless it does not reflect any physical process.
Unclear physical meaning has been a big obstacle that keeps fractional derivatives lagging far behind
the integer-order calculus. It can be applied to several areas of knowledge, such as physics, chemistry,
engineering, technology...

In this section, we present here some motivations for the use of fractional calculus for example
calculate a heat flow by using Fourier’s law, measuring memory with the order of fractional derivative
the effect of memory, and we give a statistical approach to some fractional operators.

1.4.1 Calculate a heat flow by using Fourier’s law

The concept of the fractional derivative of % order appears occurs naturally in [34] when they were
tried to calculate a heat flow by using Fourier’s law.
They researched to give the solution of the heat equation
Ju d%u
— —Uu—==f(t), t>0, >0 4.
o Har =) y= (1.4.1)
the unknown function u(y, f) satisfies a nullity constraint at y = 0 (the temperature is imposed) and
its gradient g—; tends to 0 if y tends to 4-oco (the temperature becomes uniform at large distances):

u(0,t) =0 (1.4.2)

0
a;l(y,t) — 0 ify — +oo. (1.4.3)
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Engineers are directly interested in the heat flow ®(t) to the wall, given by Fourier’s law:

D(t) = —LgZ(O,t), t>0. (1.4-4)
They solved the previous problem (1.4.1)-(1.4.3) by using the Fourier transform in time.
Then, they obtained this expression

u(y,w) = %f [1 — exp (— Zwy” (1.4.5)

L

According to Fourier’s reciprocity formula, we get the function u
We can then derive this expression with respect to y:

ou 1 - iw
@(y/w) - \/@f exp <_ ly> (146)

and substitute this expression at y = 0, they have:

D(w) = —\/Zf (1.4.7)

As results, the quantity \/g A(w)in (1.4.7) seems to be able to be interpreted as the transform of
Fourier of an integral of the order of one-half of the function f, why? because Fourier’s transform
of the function derivative of f is obtained by the multiplication of the Fourier’s transform of the
function of f and iw.

More precisely, if we pose

1
v(t —H(t 1.4.8
(1) = JH() (149)
where H(t) Heaviside’s function (1.1.3), we see that

7T

o (1.4.9)

v

The expression above permits to write more precisely the expression of the heat flux under the

D= —\/Zﬁf (1.4.10)

According to the convolution, v * f of the functions f and v which defines as follow

e = [ v)f-y)dy

following form:

and the classical relation -
vk f=Uf (1.4.11)

d(t) = —\/Zv*f = —\/z/otf(e) \/;1279 (1.4.12)

We have just shown the half-order integrator of the function f.

They have that
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1.4.2 Order of fractional derivative as tool for measuring memory

As we know the fractional derivative has rich history as long as that of classical calculus and is a
promising tool for describing memory phenomena. This is back to the kernel function of fractional
derivative, it is called memory function, but it is much less popular than of the calculus of integer
order . Why ? Because we need the physical meaning of fractional derivative, which still an open
problem. In modeling various memory phenomena. In [33] they observed that a memory process
usually consists of two stages. The first stage is short (the fresh stage) with permanent retention,
and the other (the working stage) is governed by a simple model of fractional derivative. With the
numerical least square method, they emphasized that the fractional model perfectly fits the test
data of memory phenomena in different disciplines, not only in mechanics, but also in biology and
psychology. Based on this model ( Scott-Blair’s model [64])

(RLD(”)‘+ e) (t) = dE(t) (1.4.13)

where (REDS, ¢) (t) is the fractional derivative which depends on the strain history from 0 to f, and
d is a positive, they found that Scott-Blair’s model originally a material model, can be a formula
for memory phenomena in various disciplines. This leads to to say that a physical meaning of the
fractional order is an index of memory.

Compared to the results obtained by others, we can see that their results may be among the best
partial answers to the question "what are the physical interpretations of fractional calculus" which
was put forward as an open problem in 1974 [64], for example in 2002, a physical Explanation was
proposed in terms of inhomogeneous and changing time scale by analogy reasoning, but the new
time scale has not been validated by any experiment [64].

1.4.3 Traditional approach of memory effect

As stated in previous subsection 1.4.1, Fractional calculus is a great tool that can be employed to
describe real-life phenomena with the so-called memory effect and is considered for measuring
memory with the order of fractional derivative. Classic models of autonomous differential equations
have no memory, because their solution is independent of the previous instant. In general, this
assertion is not true for fractional differential equations. Among some ways to introduce and
detect the memory effect into a mathematical model is by changing the order of the derivative
of a classical model so that it is non-integer [33]. Thus, fractional calculus has been shown to
be efficient in mathematical modeling. for that we mention the following. Let u be function
defined on [a,T] and t1, t, € [a,T] such thata < ty < t, < T, P, = (I%u) () — (I%u) (t1) and
Py = (I%_u) (t2) — (I%_u) (t1) for « € RT. From equalities below, one can observe that the value of
Py and P, depend on the entire range of u over [4, f;] and [t1, T] respectively if & # 1, whereas P; and
P, depend only on the range of u over [t1,t;] if & = 1:



1.4. Some motivations for using fractional calculus 25

1 ta N 1 t .
= 1“(0()/,1 (ta —8)* tu(s)ds — F(oc)/a (t1 — )" Lu(s)ds
= 1“(10¢) [/tlz(tz —5)* Lu(s)ds + a ! [(tz e (e S)afl} u(s)dS] (1.4.14)

and

=T J, o0l = gy [ et
— F(llx) [/th(s _ tl)tx—lu(s)ds + tT [(S B tl)a—l —(s— tz)“_l} u(s)ds} . (1.4.15)

Note that if « = 1, then the second integral in (1.4.14) and (1.4.15) is canceled:

P=P= " [Cus)d
V=P = o [ u(s)as.

1.4.4 Memory effect in fractional calculus based on statistical expectation

Here, we focus to present the so-called memory effect in the Riemann-Liouville and Caputo fractional
derivative approaches on [a, T| based on statistical expectation, to the best of our knowledge, which
has been presented in the literature [22, 55].

Proposition 1.4.1 ( [22]). Let « € R" and u € ACla, T]. Under these conditions, we have

(I20) () = gy E 0 (= )X +); (1.4.16)
(Iz-u) (t) = ME (u(T—(T—1t)X1)); (1.4.17)

(F-Dsu) (1) = ME (u ((t — a)Xa +a)) + (;(_3“_):;15 (W (t—a)Xs +a)), 0<a<;
(1.4.18)
(RLDD;,u) (t) = (I‘T(l_—t>a)E (u (T — (T — 1) X)) + %E (—/ (T—(T—HX3)), O<a<l;
(1.4.19)
(D% u) (t) = (t_ia)E (W' ((t—a)Xp+a)), 0<a<l; (1.4.20)
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a (T — t)_lx /
(Di-u) (t) = WE (—'(T—-(T-HXp)), 0<a<l, (1.4.21)

where X1, Xo and X3 are random variables follow the beta distributions B(1,«), B(2,1 —«), B(1,1 — )
respectively and E (u(.)) is the expectation or expected value of u(.)[58]

Proof. First, we note that B(1;a) = % From (1.3.1), we have

(1) () = iy [ =9 tueas = i [e-apt (132 ) u(s)ds

o t—a
Put T = {=¢ , we obtain
(I%u) (t) = (t—a)” /1 (1—x)""tu((t—a)x +a)dx
at - ['(a) Jo
(t—a)rB(Le) [ 1-n)
= (o) /0 B(1,4) u((t—a)x +a)dx

_ (t—a) /01 (1B_( x)a_lu((t —a)x +a)dx.

al (o) 1,a)
)a—l

(1

B(1,«)
true for X; ~ B(1, a).

Similarly by the saime technique of above discussions we find that (1.4.17)-(1.4.21) hold true. [

We use the fact of is the density function of a beta distribution, we have that (1.4.18) holds

Remark 1.4.2. Note that, by Lemma 1.3.28, exchanging u(t) by u(t) — u(a) and u(t) — u(T) or, equiv-
alently u ((t —a)Xp+a) by u ((t—a)Xo+a) —u(a) and u ((T — (T — ) X2) by u (T — (T — t)Xp) —
u(T) in (1.4.18) and (1.4.19) respectively, for 0 < a < 1, we can rewrite Caputo’s derivatives as
follows:

o __(t__a)ia
(Dgvu) (1) “T—a)

(t—a)l=«

E(u((t—ﬂ)X2+ﬂ>—”(a))+m

E(u'((t—a)X3+a)); (1.4.22)

(D%-u) (t) :ME (u(T—(T—t)X2) —u(T)) + ME (= (T— (T —1)X3)). (1.4.23)
L I(1—a) 2 I(3—n) 3
We can see that (1.4.22) and (1.4.23) coincid with (1.4.18) and (1.4.19)respectively. This follows from

the proof of Proposition 1.4.1 and Definitions 1.3.8 and Lemma 1.3.28 .

Next, we provide some examples of Riemann-Liouville and Caputo fractional derivatives using
the formulas (1.4.18)-(1.4.21).

Examples 1.4.3. 1. If u(t) = ¢, where c is constant, we have E[u((t —a)Xj; +a))] = E|[c]
E[u(T — (T —t)X1))] = Elc] = c and E[u'((t —a)Xy —|—a))J = Eu(T—(T-1HXy ))J =
Thus, from (1.4.18)-(1.4.21) we have (RED% u) (t) = C&Iﬁ)@ , (RED%_u) () = g )a) , and

(i) (1) = (D) (1) = 0.

Il
SRS
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2. For the power functions u; and u,, we find (RED% uy) (t), (RED%_up) (t), (D% u1) (t), and
(RED%_u) (t) , for 0 < a < 1. Note that

Efir ((F— a) Xy +a))] = /01 (1Bz1f:)()au1((t —a)x+a)dx

B a)x)P~1dx

t—aﬁl/B 51dx

=(t—a)f ' (1-a)B(B1-a)

and

£l (- %+ )] = [ 2T (- e+ oy

= /01 (B}(z—, ic)__’:;)‘ (B—1)((t —a)x)P2dx

— ) % 42
(61— 02 [ Gt

_(B-D(t—a)P?
= Boi—a PA1-0

By (1.4.18) and the fact 11 (a) = up(T) = 0, we have

(D% ) () = Y= St )11 - )B(B 1~ )

(t= ) (b1~ )P
* TG4 BRi—a PB4

(1 —a)(t—a)ft (B—1)(t — a)f—o1
- i B(,Bfl—tx)—kr(3_“)B(2’1_w)B(ﬁ,1—a)

- o (1—a) (B—1)
_(t—a)/8 1B(ﬁ,1—04) I'1—«) T(3—a)B(2,1—x)
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(1.4.24)
. a)ﬁfaflr(ﬁ)r(l — ) [ U-a)  _ (F=DIB—a) ]
TB—a+1) [T(1—a) T(B-a)(2)I(1—-a)
_ e DBTA—a) [ (1—a)  (B—1)
= (t—a)f lF(ﬁ—uH—l) [F(l—(x) + F(l—a)]
— (o)l
= (t— a)ﬁalr(ll;(f)a), (1.4.25)
and
(D) (1) = (D) (1) = () = (¢~ P~ 1P
Furthermore,
(F1Df-2) () = (D) (1) = (7 = 0+ Bl (1.4:26)
3. For the two functions us(t) = e~ and ug(t) = e“"=%), we have
(RED%us) (1) = (= a)Eyza(c(t — a)) (1.4.27)
(RLD%,%) (£) = (T — t) " “Eq1_(c(T — 1)) (1.4.28)
(Dg-us) (t) = c(t —a) "Eqp-a(c(t —a)) (1.4-29)
(D7-ue) (t) = (T — ) “E1p—a(c(T — 1)) (1.4.30)

The results (1.4.25)-(1.4.30) of Examples 1.4.3 coincide with those presented in the literature,
we can see that the equations (1.4.16)—(1.4.21) can be used instead of the traditional approach to
fractional calculus.

Next we present some results based on statistical expectation
Proposition 1.4.4. The weight in each weighted average:
1. (I%.u) (t) is affected by historical values of u((t — a) Xy + a) according to density function ux, (x) =

(1—x)~1

B which is increases,if 0 < o < 1, decreases, for & > 1;

2. (I%_u) (t) is affected by future values of u(T — (T — t)X1) according to density function ux, (x);
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3. (REDY u) (t) is affected by historical values of u((t — a)Xo + a) and u'((t — a) X3 + a), according to

the two densities ux,(x) = 1(3%1_3)—;“)””51 ux,(x) = %

4. (RED&_u) (t) is affected by future values of u(T — (T — t)Xo) and —u'(T — (T — t)X3), according to
the two densities ux, (x) and ux,(x);

which are both increasing for « € (0,1);

5. (D%.u) (t) is affected by historical values of u'((t — a) X, + a), according to the density ux, (x);
6. (D%_u) (t) is affected by future values of —u'(T — (T — t)X3), according to the two density ux, (x).

Items 1, 3 and 5 indicate that the values of the fractional integral, as well as the fractional
derivatives in t, are affected by the historical values of u (at every time before t). Thus, the fractional
calculus seems to be a more adequate mathematical tool for modeling phenomena with hysteresis
than the classical calculus.

It is said that such a system presents the phenomenon of hysteresis, when the current state of a
system is influenced by the dynamics of its historical past. More general, hysteresis is a type of non-
limited window memory (that is, limited from the origin), so it can be formulated mathematically
with a convolution kernel from the origin. This is a typical kernel used to define integral and
differential fractional operators, such as The Riemann-Liouville and Caputo Differintegral approach.

Items 2, 4 and 6 indicate that the values of the fractional integral, as well as the fractional
derivatives in t, are affected by the future values of u (at every time after t). Thus, the fractional
calculus seems to be a more adequate mathematical tool for modeling phenomena which has this
properties than the classical calculus.

1.5 Some topics from functional analysis

In this section, we present some notations and terminologies of functional analysis that will be used
in this thesis.

1.5.1 Cone in Banach Space

Let [E be a real Banach function space, endowed with the infinity norm.

Definition 1.5.1. A nonempty closed convex set K C E is called cone if the following properties are
satisfied.

1. Vu e K, VA > 0: Au € K.
2. VueK:—ueK = u=0.

Definition 1.5.2. An operator £ : [E — E is said to be Lipschitzian if there exists a positive real
constant k such that for all x and y in E,

I Lx =Ly [|[<klx=yll. (1.5.1)

that for all x and y in



1.5. Some topics from functional analysis 30

Remark 1.5.3. The smallest k for which (1.5.1) holds is said to be the Lipschitz constant for £ and is
denoted by L. If L < 1 we say that £ is a contraction, whereas if L = 1, we say that £ is nonexpansive.
1.5.2 Fixed point theorems

The theory of fixed point is one of the most powerful tools of modern mathematics. The theorems
which are concerning with the existence of solutions for differential equations.

Definition 1.5.4. [69] A point x € E is called a fixed point of an operator £ : E — E, if
L(x)=x,x€E.

Banach[12] proved that a contraction mapping in the field of a complete normed space possesses
a unique fixed point. This theorem is probably the most well-known fixed-point theorem.
This theorem is outstanding among fixed point theorems, because it is not only guarantees existence
of a fixed point, but also its uniqueness, an approximation method actually to find the fixed point, a
priori and a posteriori estimates for the rate of convergence.

Definition 1.5.5 (Banach Fixed Point Theorem). [12] Let E be a Banach space and £ be a contraction
mapping with Lipschitz constant k. Then £ has an unique fixed point.

Definition 1.5.6. [69] A continuous operator is called completely continuous if it maps bounded sets
into precompact sets.

Lemma 1.5.7 ( [38], p. 219, PC-type Ascoli-Arzeld Theorem). Let () C PC(],R). Suppose the following
conditions are satisfied:

1. Q) is uniformly bounded subset of PC(J,R);
2. Q) is equicontinuous in J, k =0,1,2,...,m. Then Q) is a relatively compact subset of PC(],R).
We recall some fundamental results of the fixed-point theory:

Theorem 1.5.8. Let X be a Banach space and () is an open bounded subset of X with 6 € (). Assume that
L : Q) — X be a completely continuous operator such that || Lu ||<|| u ||, Yu € 9Q). Then L has a fixed
point in ()

Theorem 1.5.9 (Schaefer’s Fixed Point Theorem). Let X' be a Banach space and L : X — X be a
completely continuous operator. If the set

E(L)={ue€ X :u=0cLuforsomeo € [0,1]}

is bounded, then L has at least a fixed point.
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In many problems that arise from models of neutron transport, chemical reactors,population
biology, infectious diseases, and other systems, we need to didcuss the existence of nonnegative
solutions with certain qualitative and quantitative properties to the considered problem. What we
normally understand by nonnegativily can be developed by arbitrary cones. The proof of existence
of solution in a cone is based upon an applications of the following theorems.

Let K CEbeacone, r>0,Q, ={ucK:|u|| <r}, and i is the fixed point index function .

Theorem 1.5.10 ([36, 37]). Let £ : KN Q, — K be a completely continuous operator such that Lu # u for
all u € 0Q),.

1. If || Cu|| < ||ul| for all u € 0Q,, then i (L, ), K) = 1.
2. If || Lu|| = ||u|| for all u € 0QY,, then i (L, ), K) = 0.

Theorem 1.5.11 (Guo-Krasnoselskii [14]). Assume that (31 and Q) are open subsets of E with 0 € ()1 and
QO C M. Let £L: KN (O \ Q1) — K be completely continuous operator. Consider

(D1) ||Lul] < ||ul|,Yu € KNoy and || Lul|| > [jul|, Yu € KNoQy,
(Da) || Lul| < ||u|l,Vu € KNy and ||Lu|| > ||ul|, Yu € KN oy.
If (Dy) or (Dy) holds, then L has a fixed point in KN (Qy \ Q).
Let f: ] — (0,00) be continuous.
Definition 1.5.12. ([11, 87]) We say that f is p— convex if
f([(1—t)xp+typ]%) <(1—t)f(x)+tf(y) forall x,ye] andt e [0,1].
f is called p—concave if (—f) is p—convex.
Remark 1.5.13. ([11, 87])
1. f is p—convex (concave) if and only if f(¢ 1) is convex (concave), where ¢(t) = %.
2. f is p—convex (concave) if and only if J,f(x) is increasing (decreasing).

In order to show existence of multiple solutions we will use the Leggett-Williams fixed point
theorem [52]. For this we define the following subsets of a cone K,

0. ={qek:|qf <c},

(b, d) = {q €K : b < p(q), [lal < d}.

Definition 1.5.14. A map IT: K — [0, c0) is said to be a nonnegative continuous concave functional
on a cone K of a real Banach space E, if it’s continuous and

M(Aq+ (1 -24)4) > ATI(q) + (1 - V)TI(g),
forallq,g € Kand A € [0,1].
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Theorem 1.5.15. [52] Let T : Q¢ — Q) be a completely continuous operator and ¢ a nonnegative continuous

concave functional on K such that ¢(q) < ||q|| for all q € Q. Suppose that there exist constants 0 < & <
b < d < ¢ such that

(D1) {q € Qu(b,d) : ¢(q) > b} #Dand ¢(Tq) > bifq € Kp(b,d);
(D2) |[Tq| <difqe Qs

(D3) ¢(Tq) > b for q € Qy(b,c) with || Tq|| > d.

Then, T has at least three fixed points qi, qp and qa such that ||qi]] < & b < @(qn) and ||qs|| > & with
¢(qs) < b.



Chapter 2

Existence of Concave Positive Solutions
for Nonlinear Fractional Differential
Equation with p-Laplacian Operator

2.1 Introduction

This chapter essentially contains the intitled worck"Existence of Concave Positive Solutions for
Nonlinear Fractional Differential Equation with p-Laplacian Operator [26] ".

The present work investigates the existence of multiple concave positive solutions of the following
nonlinear mixed-orders three points boundary value problem for p-Laplacian

Df, (¢p (DGsu(t))) +a(t)f(u(t)) =0, 0<t<1, (2.1.1)
u(0) — By (D§:u(0)) =0, u"(0)=0, u'(1)—pu'(y) =2, (2.1.2)
Diu(1) =0, [¢p(DEu(0)] =0, [¢pp(DLu(1))]” =0, (2.1.3)

where, f: Ry —+ Ry, Bp: R =+ Ry, a:(0,1) = Ry are given continuous functions, D, Dlﬁ,, are
respectively; the left-sided and the right-sided Caputo fractional derivatives with 2 < §,« < 3 and
¢p(s) is p-Laplacian operator: i.e., ¢,(s) = [s|P2s, p > 1, ((])p)_l = ¢y, %+% =1,17€(01), pe
[0,1) are two arbitrary constants and A € Ry := [0, c0) is a parameter.

The following hypotheses will be used in the sequel.
(Hp) The function a does not vanish identically on any closed subinterval of (0,1).

(Hz) The function By is odd on IR, and there exist A, B > 0 such that

Bv < By(v) < Av;  forallv > 0.

33
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Motivated by the above works, under some sufficient conditions we obtain existence of at least one,
two and three positive solutions for (2.1.1)—(2.1.3). The organization of this chapter is as follows: First
of all, we present some necessary definitions and preliminary results that will be used to prove our
results. Secondly, we discuss the existence of at least one positive solution for (2.1.1)- (2.1.3). Next,
we discuss the existence of multiple positive solutions for (2.1.1)—(2.1.3). Finally, we conclude by
giving an example.

2.2 Preliminary results

Consider the boundary- value problem

DS, u(t) +y(t) =
u(0) — By (Df. u(0))

0, 0<t<l, 2<a<3, (2.2.1)
0, u”(O) = 0, u/(l) — ‘uu,<7’]> e )\ (222)

Lemma 2.2.1. Let y € C*[0,1] = {y € C[0,1] : y(t) > 0; t € [0,1]}, then the (BVP) (2.2.1)-(2.2.2) has a
unique solution, defined by

) = [ Gt + s [ + 12+ B (w(0),

(1—u)
where
_ 1 (a=DtA =)= (t=s) ] s<t
G(t,s) = () { (@ —1)t(1 — s)*2; f<s (2.2.3)
and
_o)a—2 _ _oa)a—=2).
Gi(s) = Wl_l){ (a S)(1_s)(ﬂ72;s) ); ;i d 2

Proof. By applying Lemma 1.3.15 and (1.3.15) in Lemma 1.3.16, the equation (2.2.1) is equivalent to
the following integral equation,

1 t
u(t) = —-C —Ct—Ctz——/ t— ) Ly(s)ds, 2.2.
( ) 0 1 2 1—‘(“) 0 ( ) y( ) ( 5)
for some arbitrary constants Cp, C;, C; € R. Boundary conditions (2.2.2) permit us to deduce the
values,
—Co=—Bo(y(0)), ;=0

1 1 . 1 o
N e ) Uo (=5 2y s)ds = [y =" Py(e)ls| +

(1—n)’
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then, the unique solution of (2.2.1)-(2.2.2) is given by the formula,

1 1

" gy t a
u(t) :_I'(oc)/o (=) y(s)ds + 3y r =) [/O (1—5)*2y(s)ds
= o 2] + s B (v(0)

(1=n)
17 am t L .
= _F(DC)/Q (t —s)" 1y (s)ds + I"(zx—l)/o (1—135)*"2y(s)ds
pt ! o U o tA
T AT /O (1—5)""y(s)ds — V/O (17— 5)*2y(s)ds + T B (¥(0))

1 t

= 0] [— /Ot(t —5)* Ly(s)ds + (a — 1)t/0 (1—35)*2y(s)ds
+ (o — 1)t/1(1 — s)“zy(s)ds}

t

;l/[t 1 n— ! K— 1 o—
i 9 s J sy yslds = [T y(s)as
tA
+ (1 — ]/l) + Bo (y(O))
! ut 1 At
= [, Gtesw)s + s [ Gitnsy()ds + 7=+ B ((0)).
O
Lemma 2.2.2. Assume that h(t) € C([0,1]) and 2 < B,a <3, € (0,1), u € [0,1), A € Ry.
Then, the following differential equation
DY (¢p (Dgru(t))) =h(t), 0<t<1, (2.2.6)
satisfying the boundary conditions
u(0) — By (D§-u(0)) = 0,u"(0) =0, /(1) — u' () = A, (2.2.7)
D u(1) =0, [¢pp (D& u(0))]" =0, [¢p (DEu(1))]” =0 (2.2.8)
has a unique solution
1 1
u(t) = /0 G(t, ), ( /0 H(s, r)h(r)dr) ds (2.2.9)
t 1 1
+ a Pi 0 /0 Gi(n,5)¢4 (/o H(s, T)h(T)dT> ds

b s b (9 ([ HODHD) ),
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where

(2.2.10)

1 (B—1)(1—t)sP2—(s—t)P71;, t<s,
i) = F(ﬁ){ (B-1Da-Dsh%  s<t

and G(t,s) is defined in Lemma 2.2.1.

Proof. From Lemma 1.3.16 the boundary value problem (2.2.6)-(2.2.8) is equivalent to the integral
equation
¢p (D& u(t)) = 1P u(t) — Dy + Dy (1 —£) — Da(1— )2

for some Dy, D1, D> € R; that is,
1 1
¢p (D u(t)) = —Do+ D1(1 —t) — Do(1 — ) + ) / (t—t)f~h(1)dr.
t

By the boundary conditions D&, u(1) = 0, [¢, (D& u(0))]" =0, [¢, (D& u(1))]” =0.
We have

1 1
DO - D2 - 0 ,Dl - _r(ﬁ—l)/o Tﬁ_Zh(T>dT.

Therefore, the solution u of fractional differential equation boundary value problem (2.2.6) — (2.2.8)
satisfies

gy (DS u(t)) = 1P u(t) — (1— t)r(‘Bl_l) /01 -2 (7)dr
— /O "H(t, )h()dr.

Consequently, Dj, u(t) = —¢, ( fo )dr) Thus, the boundary value problem (2.2.6) —
(2.2.8) is equivalent to the problem

u(0) — By (Dg u(0)) = 0,u () () p'(17) = A,

Lemma 2.2.1 implies that the boundary value problem (2.2.6) — (2.2.8) has a unique solution,

(P){D8‘+u(t)+<pq (Jy HtR( ): €(0,1), 2<a<3

u(t) = /0 'G(9)g, ( /0 1 H(s,r)h(r)dr) ds (2.2.11)

+ a Pity) /01 Gi(n,5)¢4 (/01 H(s, T)h(T)dT) ds

+ (1)::1) + By <<pq </01 H(O, T)h(T)dT)) .

The proof is complete.
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Lemma 2.2.3. Assume that y € [0,1) holds, then the functions G(t,s), Gi(t,s) and H(t,s) defined by
(2.2.3), (2.2.4) and (2.2.10) respectively such that

(i) G(t,5), G1(t,s) and H(t,s) are continuous functions on [0,1] x [0,1],

a—=2

"T(a—1)
—1t)s ! T
U092 o0 () € [0,1] % [0,1], J2 Ga (g, 5)ds = 0=,

1 _ (= 1—s)P
Jy His, 0)dr = 55 — 1530

(iii) G(t,s),G1(t,s),H(t,s) =0, forall (t,s) € [0,1],

(ii) G<tfs><“§@i’iffor (t,5) € [0,1] x [0,1], Gy(1,5) < 1=
g 1

(iv) £ 1G(1,5) < G(t,5) < G(1,s); (1—t)P"1H(0,s) < H(t,s) < H(0,s) forall 0<ts<1,

() (1—t2)G(1,5) < Gj(t,s) < 253G(1,s) forall 0<t,s<1.

Proof. From the definition of G(t,s), G1(n,s) and H(t,s), it easy to check that (i) and (ii) are both
satisfied. We shall prove that (iii) holds, we set

g1(t,s) = (a —1)t(1 —5)* 2 — (t —s)! for 0<s<t<1
g(t,s) = (a — 1)t(1 —s5)* 2 for 0<t<s<l1.
To prove that (iii) is true, we need to show that g; > 0 fori=1,2
(1)if 0 <s <t <1, we have
g1(t,s) i= (a —1)t(1 —5)* 2 — (t —s)*!
> (0 — 1)1 —5)v 2 — (t—s)* !
_qa—1 o _\a—2 o f a—l
=t [(oc 1)(1—s) (1 t) }
Notice that
S r
(1 - ¥> <(1—s),¥s€(0,1); r>0. (2.2.12)

Thus according to (2.2.12), we have

a1 [((x — (-2 (1- S)M} >0

t

(2) if s < t, then it is clearly g» > 0.

Similarly, G (t,s) and H(t,s) for t,s € (0,1). From above discussions, we conclude that G(t,s) > 0,
Gi(t,s) > 0and H(t,s) > 0 for any t,s € (0,1). So property (iii) holds.

Now we prove that (iv) holds. Firstly we check that g;(t,s) and g»(t,s) are nondecreasing with
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respect to t € [0,1].
From (2.2.3) and (2.2.4) we have,

t

S
t

(2.2.13)

NN
NN
NN

/ T'(a) , 0 1
Gilt:s) = Gilt:s) = 4 (wpyag 2 0<t<s<1

Clearly, G1(t,s) > 0, for 0 < t,s < 1, so G(t,s) is increasing with respect to t € [0,1] and therefore,
G(t,s) < G(1,s), for 0 < t,s < 1. This to say that (1) of Lemma 2.2.3 is satisfied. Secondly setting

hi(t,s) = (B—1)(1—t)sP72 — (s —t)P71 0<t<s<1
h(t,s)=(B—1)(1—t)sF2  0<s<t<],

we have

ahl(t,s)
ot

=—(B-DsP 2+ (B-1)(s— )P

=(B-Dls—1)f7? -5

= (B-1sP2((1- DF 2P <,

which means that /;(t,s) is nonincreasing witch respect to ¢ for 0 < t < s < 1. It easily to see that
hy(t,s) is nonincreasing witch respect to t for 0 <s <t < 1.

Thus
H(t,s) < H(0,s) for 0<t<s<1,

and
H(t,s) < H(0,s) for 0<s<t<1.

From the above discussion, we have
H(t,s) < H(0,s) for (t,s)€[0,1] x[0,1].
On the other hand, if t > s, then,
G(t,s)  (a—1)tH1—s)*2—(t—s)*!
G(l,s) (a—1)(1—5)*2—(1—s)*1
(e =1)(1—s)* 2= (1—s)""1]

T (a—1)(1—s)r2—(1—s)r 1
A

If t < s, then G(t,5)/G(1,s) = t*°1; therefore, G(t,s) > t*"1G(1,s), for 0 < s,t < 1, which means
that (iii) of Lemma 2.2.3 holds.
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Similarly by the same technique of above discussions we find
H(t,s) > (1—t)P71H(0,s), for 0 <s,t < 1.

So the property (iv) of Lemma 2.2.3 holds.
Finally we shall prove that (v) hold. There are two cases to consider.

Case 1: 0 <s <t < 1. In this case, by (2.2.13), (iii) and (iv) of Lemma 2.2.3, we obtain:

o< GilEs) _(x=1)(1=)*2 = (a—1)(t—5)*
S G(Ls) T (a—1)(1—s)2—(1—s)*!
(= 1)1 =) 2 = (&= 1)(t =)
(@ =1)(1—s)2—(1—-s5)c2 (2.2.14)

(@ —1)(1—5)*2—(a—1)(t —s)*2
(“—2)(1—5 a—2
2

_(x-1) )(t—s)
Ta=2)(1-s)2 (a—2)(1—s)2
B G G
C(@-2) (a=2)(1—s)r2
guc 1.

a—2

Also, we have

Gi(t,s) (a—1)(1—s)*2—(a—1)(t—5)*2
G(Ls) = (@—D-s2—(A—s) "
(a—1)(1—5)* 2= (a=1)(t—5)" >
~ (. —1)(1—s)x2
(a1 - $)*2  (a—1)(t—s)2
Ta—1(1-5)2 (a—1)(1—s)2
T 2(1 2)%2
1= D (2.2.15)
Therefore, from (2.2.12), we get
a—2(1 _ Sya—2
A S VA

(1—s)r—2
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Case 2: 0 <t <s < 1.In this case, by (2.2.13), (iii) and (iv) of Lemma 2.2.3, we can write:
0 < Gi(ts) _ (a—1)(1—s)*2
T G(Ls) T (a—1)(1—s)r2— (1 —s)al
o (@ —1)(1—s)*2
Sa—1)(1—s)*2— (1 —s)a2
le=1)(- 5)% 2
(e —2)(1—s)r2
(a—1)
= =2 (2.2.16)
Then by similar arguments to (2.2.15), one has
Gi(t,s) (a —1)(1 —s)%2
G(l,s) " (a—1)(1—s)22—(1—s)a1
(¢ —1)(1 —s)*2
=
(0 —1)(1 —s)x2
=1
>1-12>0. (2.2.17)
Hence, from (2.2.14), (2.2.15), (2.2.16) and (2.2.17), we deduce
(1- t“*z) G(1,5) < Gi(t,8) < & : ;G(l,s); forall 0<ts<1, (2.2.18)
the proof is complete. O

We shall consider the Banach space E = C3([0,1]) equipped with standard norm

o / 17 "
sl = max {ana. 1), ama o (0], x| (0)], gma o 0] .

Set the cone on E,

P = {u € E : u is a nonnegative, monotone increasing and concave function on [0,1]}.
Lemma 2.2.4. Let h(t) € CT[0,1]. If u € P is a solution of BVP (2.2.6)- (2.2.8), then u(t) satisfies
1.

: > a—1
prg;glu(t) > o max fu(t)],

o—2
. > a—1 !
prgtlglu(t) > P max u'(8)],
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3.
: > _ x—1 "
pggglu(t)/BF(w D)p"™™" max [u(1)],
4.
. > a—1 " )
prgtlglu@)/Bp max [u”(t)]

Proof. (1) From the Definition 1.3.1, 1.3.8 and Remark 1.3.10, we have Dfj, u(t) = S’j"‘u’”(t),z <a<
3, D§,u(t) = u"'(t),x = 3. So by Lemma 1.3.14 and 2.2.6, we deduce that D§, u(t) is continuous
for all u(t) € E.
Hence, from the definition, u is nonnegative, continuous and increasing function on [0,1]. From
Lemma 2.2.2 and 2.2.3, we get

u(t) :== /01 G(t,s)¢q (/01 H(S,T)h(T)dT> ds

s G ([ Hs oncmar) o

+ (17:[) + B (gbq (/01 H(0, T)h(T)dT>>

< /01 G(L,s)¢, (/01 H(s, T)h(T)dT> ds
+ @fll) /01 Gi1(17,5)¢4 </01 H(s, T)h(T)dT) ds

+ (1_)\” + By (gbq (/01 H(0, T)h(T)dT)) :

Then
max |u(t)| < /O G, s), < /0 1 H(s,r)h(r)dr) ds

<1
s e ([ Hs oncoar) o

+ (1_)‘]4) + B <<pq ( /O "H(o, T)h(T)dT)) .
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On the other hand, Lemmas 2.2.2 and 2.2.3 imply that, for any ¢t € [p, 1],

u(t) > /1 0 1G(1,5)¢, (/OlH(s, T)h(T)dT) ds
+ (Pl"’_ m/ G1(17,5)b, </01H(s,r)h(r)dT) ds
+ (;‘p_a;) +p* 1By (apq < / "Ho, T)h(T)dT))
> 0t 1[/p 1s¢q</ H(s, T)h(T)dT)ds

N (pltp_ n / G1(1,5) b, (/01 H(s, T)h(T)dT) ds

+ é‘pa;) + 0% 1B, <¢q < /0 "HO, T)h(T)dT))}

a—1

max |u(t)].

>
ZP 0<t<1

(2) From Lemmas 2.2.2 and 2.2.3, clearly u' is nonnegative, decreasing on [0,1] and therefore,

W (t) = /01 Gi(t, )¢, (/01 H{(s, T)h(r)dr) ds

+ ﬂfﬂ) /01 Gi(1,9)¢q </01 H(s, T)h(T)dT) ds + (1—AH)
< /01 - ;G(l,s)qac7 (/01 H(s, T)h(T)dT> ds

N —

+ 5l f ) /01 Gi(1,8)¢q (/01 H(s,r)h(ﬂdr) ds + (1_)\]/[)

Since 2 < a < 3, we have —; > 1. Then,

42



2.2. Preliminary results 43

Thus

max [/ (£)] < 22 M G(1,5)¢, </01 H(s,r)h(r)dr) ds (2.2.19)

From (2.2.19), we have
u(t) = p* 1 [/01 G(1,5)¢q (/01 H(s, T)h(’L’)dT) ds
+ a K m /01 Gi(1,9)¢q (/O‘1 H(s,r)h(r)dr) ds

+(1_Ay) + By <4>q </01 H(0, T)h(T)dT) )] ,

x—2
Zz —
zx—lp

a—1 /
).
max lu'(t)]

Thus, it follows that (2) holds.

(3) By Lemmas 2.2.3 and 2.2.12, one has

Dg; (u) (t) = — <cpq (/01 H(t, T)h(T)dT> >, 2<a <3 (2.2.20)

From above discussions, we conclude that u(®) is negative and continuous function on [0,1] . Also

D2 (u(t)) = DD (u(t))

— _D%* <¢q (/01 H(t, r)h(r)dr) )
= 52 (¢q (/01 H(t, T)h(T)dT) )
_ _1"(0¢1_2) /Ot(t _s)nd <(Pq (/01 H(s,T)h(T)dT> )dS,
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so, u” is negative, decreasing on [0, 1]. Hence from Lemma 2.2.3 and Condition (H;), we obtain

" (£)] = —— 5 /Ot(t—s)"‘_3 <¢q </01 H(s,r)h(r)dr))ds

§¢q(/01H )Xr(“l_z)/ot@—s)“ds
Scpq(/olH d)xr(al_l)tf"z
1
¢q<0H )XF(Oél—l)
< M(:l) X By (cpq </01 H(O,r)h(r)dr))
1

< Br(a11) X Uol G(1,5)¢, </O His, T)h(T)dT) ds
+V/01G1(77,s) dr> s

1
= " (/O (s, T)h(x)dr ) d
A 1
+W + By <¢q </0 H(O,T)h(T)dT>>:|
< - x max |u(t)].
T Bl(a—1) o<t<t
Thus,
max |u”(t)] < - x max |u(t)].
0<t<1 S BT(a—1)  o<t<i

Consequently, (4) holds.
(4) From (2.2.20 ), we have

MO p_— ( /0 "Ht, T)h(T)dT) .

The continuity of #(t) and H(t,T) implies that u(®)(t) is a negative, continuous function on [0,1].
Then
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0
+(1fy) + B <q>q ( /O 1 H(O,T)h(T)dT))}

<ixm |u(t)]
S B oeid '
Thus,
1
®3) < —
max [ (H] < g < max fu(t)].

Using (1), we obtain

a—1 (3) < s
Bp* ™" max |u (t)|\prgtlgllu(t)|-

This completes the proof.

O
Remark 2.2.5. Let h(t) € CT[0,1]. if u € P is a solution of BVP (2.2.6)—(2.2.8), then u satisfies
: a—1
prgtlglu(t) Zp" M|l u |,
where X
. x—
M = mln{H,B,BT(tX — 1)} .
Define the cone K by
— Cmi a—1
K= {u € P.prgglu(t) >p" M| u H}
and an integral operator T, : E — E by
1 1
Tyu(t) = / G(t,5)p, ( / H(s, T)a(t) f (u(7)) dT> ds
0 0
]lt 1 1
+ (1_14)/0 G1(1,5)¢q (/0 H(s,T)a(t)f (u(t)) dT) ds
At 1
o B (9 /O H(0, 7)a(t)f (u(t))dt ) ) := F(¥). (2.2.21)

The fixed points of T) are solution of (2.1.1 )-(2.1.3). Our aim is to show that T) : K — K is completely
continuous, in order to use some fixed point Theorems.

Lemma 2.2.6. [25] Let ¢ > 0,a > 0. For any x,y € [0,c], we have
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1 ifa > 1, then |x* —y*| < ac* Yx -y,
2 if0<a<1,then [x* —y*| < |x —y|~
Lemma 2.2.7. T) : K — K is completely continuous.

Proof. Let u € K; in view of the assumption of nonnegativeness and continuity of functions
G(t,s),H(t,s) and a(t)f(u(t)), we conclude that T, : K — K is continuous. Using the property
of the fractional integrals and derivatives, we can get that

(T = [ Gitt ey ( [
s [t ([ Heoa@s i ar ) ds 2

Clearly, T} (u) is continuous and nonnegative.
and

1

H(s,T)a(t)f (u(t)) dT) ds (2.2.22)

+

(TYu)(t) = Dg. (Tau)(t)
= DS:aD86+(T)\M
= DI "D} (F(t)

1
= —Dg." ((pq ( i H(t, T)ﬂ(T)f(u(T))dT))
i (o ( [ 1000 (o) ). (2223)

It is clear that T} (u) is continuous and nonnegative on [0, 1].
Also, from (2.2.20) we get,

(Tf)u)(t) = —¢, (/01 H(t,t)a(T)f (u(7)) dT) . (2.2.24)

) ()
)

(

Observing TA3) (u) is continuous.
So, Tyu is concave on [0,1] and Tyu € C3[0,1]. From Remark 2.2.5 we obtain T)(K) C K. Let Q C K
be bounded, then there exists L > 0 such that

Vue Q: [f(u(t)] < L.
Then, u € ) and from Lemmas 2.2.2 and 2.2.3, we have
ITyu(t)] = /01 G(t,5)d, (/01 H(s,r)a(r)f(u(r))dr) ds
}lt 1 1
R /0 G1(1,5)¢bg (/0 H(s, T)a(t) f (u(1)) dr) ds
A 1
s o (o () HO a0 () o) )
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< /01 a s>¢q ([ # vateLie ) as
qscpq(/olH Ldr)
T
< /0 <1s>¢q</ H(O, Da(r )Ldr)
qus (/ Ldr)
+Aq>q</H LdT)
g(/ s)ds + ¢ / qsds+A>
<o ([ )

+

L1 La-1 )
<(fw et T “‘)
X g </01 H(O,T)a(T)dT) + {a i\ m =/ (2.2.25)

g/o z:;G(l,s)(pq </01H(0 Da(t )LdT> ds
n ( K ) ! G1(17,8)Pq (/01 H(O,T)a(T)LdT> ds
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< BF(le— 0 X By <¢q (/01 H(0, T)a(T)LdT)

(1;[) + A, (/01 H(0, T)a(T)LdT)] ~ =T (2.2.27)

1-p) /01 G1(11,8)¢q </01 H(QT)ﬂ(T)LdT) ds

+ (1—Ay) + A¢, (/01 H(O,T)H(T)Ldf>:| = %Z. (2.2.28)

Thus, from (2.2.25), (2.2.26), (2.2.27) and (2.2.28), || Thu(t) ||< N¢, for all u € (3, where

1 1 a-1
N_max{l'B’BI’(zx—l)’zx—2}'
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Hence, T)(Q)) is uniformly bounded.
On the other hand, let u € O, t1,t; € [0,1] with #; < t, from Lemmas 2.2.2, 2.2.6 and 2.2.3, we have

(T (tz) = (T 1) = [ Gtz 99y ([ Hs () (u(e)) )
s [ et ( / Hs, )a(n)f (u(r)) e ) ds + 72
/ (t1,5)¢, /01H dT>ds
- s [ e / 1 H(s,r>a<r>f<u<r>>dr) ds— s
/ G(ta,s) — G(t1,5) |y (/1 H(s,r)a(r)Ldr) ds

+ V\tz il / G1(17,5)¢q (/1 H(s, T)a(T)LdT> ds + )\(|i‘z_—;)1!

§</|Gtzs G(t1,s)|ds + V(‘tZ tl‘/@ns)d)

_ 1 Aty — t1|
x LT 1¢, </0 (O,T)a(r)dT> + (12_ V)l ,

(T(t2) = (T (10)] = [ Galrz ey ([ (5, mha() () ) s
1 1
_/O Gi(t1,5)¢q (/O H(s,T)a(T)f(u(r))dT) ds
< [[1G1l129) = Galon 9y ( [ HGs DateiLae ) as

1 1
< ( |G1(t2,8) — Gi(ty,s \ds) x LT, </ H(0 T)a(T)dT) ,
0 0
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= F((xl—Z) Otl (b2 =9)* 2 = (1 = 5)" gy </01 H(s, T)a(T)Ldr) ds
n r(al—z) /t :2(1‘2 _ o, < / 1 H(s,T)a(r)Ldr) ds
< (L + D) x LT~ 1¢q</01H >
< (I3 +1Ig) x L™ 1¢q</01H >
where
1

t
I = / (2 — §)*3 — (1 — s)*3ds,
2) 0

[(a—

I —1/t2(t —5)%3ds
2 — F(Dé—2> " 2 ’

1
I — tﬂé*Z_t()é*Z_ t _t a—2 ,
3 r(a_ 1) [2 1 <2 1) ]
1
I = $42,
T T(a—1)!

Ifg—1> 1, then
(T (k) — (1)) = \% ( [ H a0 <u<r>>d~c) —u ([ He2 Da0)f (u(e) )|
g—1)¢, (C )/ (h,7)a Ldr—/ H(ts, 7)a(7) L]
< (9—1)¢, (CL) /O |H(1,7) = H(b, )| a(7)d.

If g —1 <1, then
(TP u) (k) — (T (1))

:\% ( /1H<tl, e e ) gy ([ Ht e i)
(\/ (1,7 LdT—/ H(tz,T)a(T)LdTD
L) ¢, (/ \H t,7) — Hit, 7)|a (T)dT).

The continuity of G(t,s), G1(t,s) and H(t,s) implies that the right-side of the above inequality tends
to zero if t — t;. Therefore by Arzela-Ascoli Theorem, T} is completely continuous. O
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Set,
-1

A= :</01G(1,s)ds—|— (1ﬁy) /01 G1(ﬂ,s)ds—|—A> X g (/01 H(O,T)H(T)d’f))] ,
Ay = EZ:;; </OlG(1,s)ds—|—(1611)/01 Gl(iy,s)ds> X Pq </01 H(O,T)a(T)dT)>:|_l,

-1

- 1 -1
vi=| g o0 ([ HODa@)|

r 1
o= [t ([ 601,901 -5
L p

2.3 Existence of Solutions

Definition 2.3.1. A continuous function f : R — R is said superlinear if:
fO - O/ fOO - 00,

where
=i O and o i L)
=0 ¢p (1) r=eo ¢y (1)
Theorem 2.3.2. Suppose that f is superlinear. Then BVP (2.1.1)—(2.1.3) has at least one concave positive
solution for A small enough and has no positive solution for A large enough.

Proof. We divide the proof into two steps.

Step 1. First, we prove that the BVP (2.1.1)—(2.1.3) admits at least one concave and positive solution
for sufficiently small A > 0. Since fy = 0, for

min {‘Pp (A1), @p (A2), Pp (A3), Pp ()‘4)} >0,

there exists Ry > 0 such that

4?;(;3) < min {‘PP (/\1) /¢p ()\2) ,(Pp (/\3) /‘PP (A4)}; re [0’ R1]~

Therefore,

f(r) <min{¢p (rA1), Py (rA2) ,¢p (rA3), ¢p (rAs) }; 7 € [0, Rq]. (2.3.1)
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Let O = {u € C?[0,1] :|| u ||[< Ry} and A satisfies

O<A<(

1— )Ry
5 . (2.3.2)

Then, for any u € KN 9Q)y, it follows from Lemma 2.2.4, Remark 2.2.5, equality (2.2.21) and
inequalities (2.3.1)-(2.3.2) that,

(Tau)(t) = /01 G(t, ), (/01 H(s, T)a(t)f (u(7)) dT) ds

+ a ;ity) /01 Gi(17,5)¢, (/01 H(s,r)a(r)f(u(r))dr) ds

# s+ B (9 ([ HODa(f (u(m)ar) )

H I
= u ],
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(T (®) = [ Gllts)ey (f " H(s, D)a(t)f (u(1)) i) s
G

cg =90 ([ s e (o) as

< r([xl_z) /Ot(t —5)* g, (/01 H(0,7)a(T)f (u(r))d’f) ds

Ty u(t)| =

Thus
| Taw ||<||ul, for ue KnoQy.

On the other hand, since fo = oo, for ¢, (A5) > 0, there exists Ry > Ry such that

4:;(8) Z (PP (/\5) T E [pa_lMRZ/ oo),

witch implies
f(r) = ¢p (rAs), for r € [p* MR, o).

53

(2.3.3)

(2.3.4)
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Set O = {u € C3[0,1] :|| u || < Ry} . For any u € KN (), by Remark 2.2.5 one has

min u(t) = p* M || u ||= p* I MR,.
T€[p1]

Thus, from (2.3.4) we can conclude that

(Tau)(1) = /01 G(1,5)¢, </01H(s, D)a(t)f (u(T))dT> ds

o /01 Gr(1,5)¢g ( /01 H(s, 7)a(7) f(u(r))df) ds

+ B (90 ([ HODa0f () e )
> /01 G(1,5)¢, </01 H(s, T)a(7)f (u(r))d’r) ds

e /01 Gr(17,5)¢g ( /01 H(s, 7)a(7) f(u(r))df) ds

(/ D)y (u(r) e ) ds

> As /1 p" TMG(1,5)¢, </1 H(s, T)a(r)dr> ds
P P
A,

[ e ([ Hes et )as) ul,

| Tau ||Z=|| u ||, forany u e KnNo, (2.3.5)

+

which implies that

Therefore, by (2.3.4), (2.3.5)and the first part of Theorem 1.5.11 we conclude that the operator
T, has at least one fixed point u € KN 0\ (2, which is a concave and positive solution of
the BVP (2.1.1)-(2.1.3).

Step 2. We verify that BVP (2.1.1)-(2.1.3) has no concave positive solution for A large enough.
Otherwise, there exist 0 < Ay < Ay < -+ < Ay < ---, with lim,_ 10 Ay = +00, such that
for any positive integer n, the BVP

DY (¢, (D& u(t))) +a(t)f(u()) =0, 0<t<1
H qu(0) — By (D0+u(0)) 0,u”(0) =0, u'(1)—wuu'(y) = Ay
Dg.u(1) =0, [¢, (D§.u(0))]" =0, [¢, (Dg.u(1))]" =0
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has a positive solution u,(t), the identity(2.2.21), permits us to write
1 1
Uy (1) :/ G(1,8)¢, </ H(s,T)a(t)f (u(r))dr) ds
0 0

s [ eatnsie, ([ Hs e o) e ) as

s o (4 () HO a0 () o) )

An

=

— 400, (n— ).

Thus
| u||— +o0, (n— o0)

Since foo = o0, for ¢, (40° 1 MAs) > 0, there exists R > 0 such that
% > ¢p (40" 'MAs) , v € [p* I MR, 00), witch implies that

f(r) = ¢p (ZVp“*lM)g) , for r € [0* MR, ),

Let n be large enough that || u ||> R, then

|l = ua(1)

55
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1
> 25 [ / p*VMAG(1,5) (1 —s) 1 D)
P

X g (/pl H(O, T)a(T)dT) ds

2(a=1) pp2y 1
M(p(l—y))/p Gi(1,5)(1 — )11

X ¢g </pl H(O, T)a(T)dT) ds] Il u ||

=2 ul,

+

which is contradiction. The proof is complete.

Moreover, if the functions f and By are nondecreasing, the following theorem holds.

Theorem 2.3.3. Suppose that f is superlinear. If f and By are nondecreasing, then there exists a positive
constant A* such that BVP (2.1.1)-(2.1.3) has at least one concave positive solution for A € (0, A*) and has no
concave positive solution for A € (A*,0).

Proof. Let ® = {A : BVP (2.1.1)—(2.1.3) has at least one positive solution} and A* = sup ©; it follows
from Theorem 2.3.2 that 0 < A* < co. From the definition of A*, we know that for any A € (0, A*),
there exists a Ag > A such that

DY (¢p (D3 u(t))) +a(H)f(u(t) =0, 0<t<1
u(0) — By (D§.u(0)) =0,u”(0) =0, u'(1) — ' (n) = Ao
Dgu(1) =0, [¢p (D u(0))]" =0, [¢p (D§-u(1))]" =0

has a positive solution u((t). Now we prove that for any A € (0, ), the BVP (2.1.1)—(2.1.3) has a
positive solution. In fact, let

K(ug) ={u e K:u(t) <up(t),t€|0,1]}
For any A € (0,Ap), u € K(up), it follows from (2.2.21) and the monotonicity of f that,
(Tau)(t) = /01 G(t,5), (/OIH(S, D)a(t)f (u(r))dr) ds
yt 1 1
+ = /0 Gi(1,8)¢4 </0 H(s,t)a(7)f (u(r))dr) ds

s s o (o () HO a0 () e )
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< 1G(t,s)4>q 1H(s,’f)a('r)f (uo(7))dt ) ds
J; et (]
s [ G ([ Hs a0 (o)) ar) o

#
LM g <¢ (/1 H(0,7)a(t) f (uo(T)) dT))
(1w T\
= Mo(t).
Thus, T)(K(u9)) C K(up). By Schauder’s fixed point theorem we ensure that there exists a fixed
point u € K(u), which is a positive solution of (2.1.1)—~(2.1.3). The proof is complete. ]

Now we consider the case where f is sublinear.

Definition 2.3.4. A continuous function f : R — R is said sublinear if:

f 0= o9, f 00 = 01
where fj and fo., are mentioned in the Definition 2.3.1.

Theorem 2.3.5. Suppose that f is sublinear. Then, the BVP (2.1.1)—(2.1.3) has at least one positive solution
forany A € (0, ).

Proof. Since fy = oo, there exists Ry > 0 such that f(r) > ¢,(Asr), for any r € [0,R;]. So for any
u € Kwith || u ||= R; and any A > 0, we have

(Tau)(1) = /01 G(1,5)¢, </01 H(s, T)a(t)f (u(7)) dT) ds
+ (1;) /01 G1(1,5)¢bg (/01 H(s,T)a(T)f(u(r))dT) ds
s+ (o () HO a0 (e o) )
> /01 G(1,5)¢, (/01 H(s, T)a(t)f (u(7)) dT) ds
s [t ([ s D0 (u(e) e ) as
> /pl G(1,5)¢, </O1 H(s, T)a(t) f (u(7)) d'c> ds
+ a f ) /pl Gi(1,8)¢q </01 H(s,t)a(t)f (u(1)) dT) ds
> s [ /p ' G(1L,9), ( /O "Hs, D)a(t)gy (u(1)) dT) ds
it [ e ([ He D, (m)ar) &
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= As [/pl p""lMG(l,s)cpq </pl H(S,T)El(T)dT) ds
+VEF17“:1;\;I) /pl Gi1(17,5)¢q (/pl H(s,r)a(r)dr> ds] | u |

=[lull

Hence, || Tau ||=|| u ||. So, if we set O = {u € K:|| u ||[< Ry}, then
| Tau [|Z]| u ||, for ue KnNaQ;. (2.3.6)
Next we construct the set (),. We consider two cases: f is bounded or f is unbounded.

Case (1) : Suppose that f is bounded, say f(r) < S for all r € [0,00). In this case we choose

2A
Rz 2 max {ZRl, 4)p(252\1),¢p(25)\2, S)\g),QDP(S)M), 1_ ‘M}

and then for u € K with || u [|= Ry, we have

(T = [ G99, ([ Hes Da@)f (u(r)ae ) ds

s [ G, ([ Hs a0 f (o) ds

At

s s o (o () HO a0 () o) )

<s [(/01 G(1,5)ds + (1:1)/01 G1(17,s)ds+A)

<an ([ BO) |+

Ry R, R,
< 7<7 _—= g
_S/\1+2_2+2 Ry=|ul,

()0 = [ Gl s, ( [ His mao)f (o) dT) N
+ Uf‘u) /01 G1(17,8)¢q </01 H(s,T)a(t)f (U(T))d'r> ds : A

[(RD)]
<S [z:; </01G(1,s)ds+ (1KM) /01 G1(17,S)ds>
X g </01 H(0, T)a(T)dT)] + (1ﬁﬂ)

R2 RZ RZ
< + =< =4+ == =
S)\z 5 > 5 R2 || u H,
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|(Tu) ()] = r(“l_z) /Ot(t —5)" ¢ (/01 H(s, t)a(t)f (u(1)) dT) ds

<s {Br(f—n""? </01 H(o, T)a(T)dT)]
=SA3<Ry=|ul,

(0] =, ([ H a0 (u(0) e
<S [;‘cpq (/01 H(O,T)H(T)d’[)]
=SM<Ry=[ul.

So
| Taw ([ <[ u |l

Case (2) : Case where f is unbounded, since fo = 0, there exists Ry > 0 such that

f(r) < min {gbp (?) Py <r)2\2> P (1A3), Pp (M4)} , for r € [Ry, ), (2.3.7)

Let

2A
Rz 2 max {ZR],R(), }
I—p

and be such that
f(r) < f(Ra), for r € [0,Ry]

(M) = [ 6o, ([ Hes a@)f (u(r)ae) ds

s [t ([ (s Da(0)f (u(e) e ) as

s s (o () HO a0 () o) )

< /01 G(t,5), (/Olﬂ(s,r)a(r)f (Rz)dr> ds
s G ([ Hs a0 (Ra)ar) o
s (o ([ HODOf (R ar) )
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< % [(/01 G(1,s)ds + (1f}1) /01 G1(17,s)ds+A>

1 R2
X ¢y (/ H(O,T)a(r)d’c)} Ry + >
Ry Ry _
=3 T “Re=lvl

< % [Z:; (/01 G(l,s)ds—k(lfy)/ol Gl(iy,s)ds)

X ¢y (/01 H(O,T)a(r)drﬂ Ry + (1—/\?!)

R, Ry
—_ — —_— R =
2 + 2 2 H u H/

(O] = gy =90, ([ s Da@)f (u(o)ae) as

< sz 090 ([ s D (R e ) a

<Az [Bl”(zf—l)% </01 H(O, T)cl(T)dT)] Ry

=Ry =|ul,

60
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|( = )f (u(T)) dr)

w(f mo
E o ([ HC 2ol f (R) e

% <1 mumﬂ]m
Ry=|u].

| A

| /\

Thus,
| Tau [[<[lu

Therefore, in either case we may put () = {u € K:|| u ||< Rz}, then
| Tau ||[<||u], for ue KnNoQy. (2.3.8)

So, it follows from (2.3.7), (2.3.8) and the second part of Theorem 1.5.11 that T, has a fixed
point u* € KN (O \ 1), then u* is a positive solution of BVP (2.1.1)—(2.1.3).

O

2.4 Triple Solutions

To show the existence of multiple solutions we will use the Leggett-Williams fixed point theorem
1.5.15. To this end, we define the following subsets of a cone K

Ke={ueK:lul<c} , Klgbd)={uecK:b<gu),|u|<d}
Theorem 2.4.1. Suppose that there exist a,b,c with 0 < a < p* *Mb < b < ¢ such that
(€) fu(t) <min{g, (%), ¢ (32) ¢ (@ha), ¢ (aAs)},  (Lu) €[0,1] x [0,0],
(C2) f(u(t)) = ¢y (01 MbAS), (tu) € [,1] x [o""'Mb,b]
(©3) fu(®) <min{g, (5),9p (), (As) 9y (A}, (Lu) € [0,1]x[0.]

17
(Cg) 0 < A < I5He,

Then (2.1.1)—(2.1.3) has at least three positive concave solutions uq, up and uz for A small enough satisfying
| l[<a, p*"Mb < g(uz) and | us |[> a with g(us) < p*~'bM,

and has no positive concave solution for A large enough.
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Proof. We prove that BVP (2.1.1)—(2.1.3) has at least three positive concave solution for sufficiently
small A > 0. By Lemma 2.2.6, T) : K — K is completely continuous.
Let

p(u) = Join, u(t)

it is obvious that it is a nonnegative continuous concave functional on K with ¢(u) <|| u ||, for u € K..
Now we will show that the conditions of Theorem 1.5.15 are satisfied.

Suppose that u € K., witch implies, || u ||< c. For t € [0,1] by (2.2.21), Lemma 2.2.4, Lemma2.2.6,
Remark 2.2.5, (C3) and (C4), we have

(Tau)(t) = /01 G(t, ), (/01 H(s, T)a(t)f (u(7)) dr) ds
+ (1%) /01 G1(1,5), (/01 H(s, T)a(t)f (u(7)) dr) ds

s (o ([ HODS (o)) )

< [[ewsi, ( [ Ho, a0 <C2A1>H dT> s
i L oo ([ oo (5) ) a
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< /01 Z:;G(l,s)cpq (/01 H(0,7)a(T) <C2/\2> " dT) ds

u 1 1 A\ P! Ac(1—p)
+ =) /0 G1(1,5)¢q (/0 H(0,T)a(T) (22) dT) ds + 200—n)

syg[giii(Ecuﬁmy+afy)énhwﬁma

X g (/01 H(O,ﬂa(r)d’c))] c+%

<5t5=
[(Tyu)(t)| = 1“(0(1—2) /Ot(t - s)a—3¢q (/01 H(s,T)a(t)f (u(7)) d1—> ds
< 1“(a1—2) /Ot(t —5)* 3¢, (/01 H(0,7)a(t) (cA3)P* dT> ds
A
3hma )

(T ( 01H u(ﬂ)dr)
(

o ([ o )
<A4[A ¢ </1H(Or)()dr)>]c:c.

ou)

Thus, we get
|| Tau(t) ||[<c, for u € K.

63

This implies that T : K. — K.. By the same method, if u € K,, then we can get || T ||< 4 and therefore
(D2) is satisfied. Next, we assert that {u € K(¢,p* " 'Mb,b) : ¢(u) > p* 'Mb} # @ and ¢(Tu) >

p* IMb for all u € K(¢@, 0" 'b,b). On the other hand, for u € K(¢, 0* ' Mb, b), we have

0" IMb < @(u) = min u(t) <|u||=b, teo1].

p<t<1
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Thus, in view of (2.2.21), Lemmas 2.2.3— 2.2.4, Lemma 2.2.6, Remark 2.2.5, and (C2), we have

o(Tau) = min [/OlG(t,s)q)q </01 H(s,r)a(r)f(u(r))dr) ds

p<t<1

s [t ([ (s Da(0f (u(e) e ) as

At

s (g ([ HO a0 (o) o) )
> p”‘lM/1 G(1,5)(1 — )@ DD
o

X g (/01 H(0,7)a(T) (p”‘_le)L5>q71 dr) ds

a1, B[ _ (-1
ro M [ G -s)

X ¢y (/01 H(0,7)a(T) (p"‘_leA5>q_l dr) ds

1
> bAs [pz(a—ﬂMZ (/ G(1,5)(1—s)0DE-1gs
Y

p [ —1)(p-
st [ amea- g 1>ds>

X g (/01 H(O, T)a(T)dT>:|

> b > p“ " Mp.

Thus, (D1) is satisfied. Finally, we assert that if u € K(¢, p* ' Mb,c) with || Tyu ||> b then || Tyu || >
p* IMb. Indeed, suppose that u € K(¢,p* 'Mb,c) with || Tyu ||> b, then by Lemma 2.2.4 and
Remark 2.2.5, we have

@(Tau) = min (Tau)(t) > p* M || Tau ||> p* *Mb.

p<t<1
Thus, (D3) is satisfied. Hence, an application of Lemma 1.5.15 completes the proof. ]

Corollary 2.4.2. If there exist constants 0 < r; < by < p! " *M 1y <1y < by < p "M by < -+ <1y,
for 1 <i < n—1and the following conditions are satisfied:

(I1) f(u(t)) < min{q>,, (ﬂgl) ,Pp (ﬂgz) ¢y (rids) by (ri)\4)} s (bu) €10,1] % [0,7],

(I2) f(u(t)) > (Pp (pailei/\5),' (t,u) € [p, 1] X [p’x*lel', b,‘],

1—u)r
(I3) 0 < A < 1=

Then (2.1.1)—(2.1.3) has at least 2n — 1 positive concave solutions.
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Proof. If n = 1, by Condition (I3.4.2), (I3.4.2) and the proof of Theorem 3.4.1, we can confirm that
T, : K. = K. C K. From Schauder fixed-point theorem, the BVP (2.1.1)—(2.1.3) has at least one fixed
point u; € K.

If n = 2, by Theorem 3.4.1, there exist at least three concave positive solutions u,, u3 and u4. By
induction method, we finish the proof. O

2.5 Some Examples

In this section we give some examples to illustrate the usefulness of our results.

Example 2.5.1. Let us consider the following fractional BVP

<<pa ( 0+u( ))) + t(ll—tz)ug(t) =0, 0<t<]1, (2.5.1)

o o " - / 1 / 1 _
u(0) — Dy-u(0) =0,u"(0) =0, u'(1)— mu (E) = A, (2.5.2)
Dj-u(1) =0, [y (D§u(0))] =0, [, (Df.u(1))]" = 0. (2.53)

We can easily show that f(u(t)) = u? (t) satisfy:

fo= uli}rgh é(é;)) = Mli}r(r;+ u(t) =0, fo= L}I_ISO q{(u) = lim u(t) = o0

obviously, for a.e t € [0,1], we have

3
/olH(O’T)“( dr = 5/2 / ;ﬁ 5/2/ 2

1
37_

dt ~ 1.020201672

So conditions hold, then we can choose R, > Ri, and for A satisfies 0 < A < %Rl < Ry, then we
can choose
O ={uekK:fJu|<Ri}, Q={ueK:|u|<R}

and by Theorem 2.3.2, we can show that the BVP (2.5.1)(2.5.3) admits at least one concave positive
solution u € KN (Q, \ () for A small enough and has no concave positive solution for A large
enough.

Example 2.5.2. Let us consider the following fractional BVP
1 :
Di | ¢; Dg,u(t) ) ) + mexp(—u (t)=0), 0<t<1, (2.5.4)

u(0) — Dy u(0) =0,u"(0) =0, u'(l)——=u'(5)=A, (2.5.5)
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D2, u(1) =0, [cpg <D2 (0))]/ —0, [cpg <D§+u(1))]// —0
We can easily show that f(u(t)) = u? (t) satisfy:
fo= tim LU _ i I = oo,

us0+ (p%(u) u=0% exp(12(t) u

Nl

—
—

~—

= lim f(u) = lim ! -
f _L}—>°° 3 (u) u1—>0+exp(”2(t)>“ ’

obviously ,for a.e t € [0,1],we have

NI—=
—~
—
~—

1
37_

3 T3 3
/olH( Da(r)dr = 5/2/\;ﬁ 5/2/ §
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(2.5.6)

dT ~ 1.020201672.

From Theorem 2.3.5, we can show that the BVP (2.5.4)—(2.5.6) has at least one concave positive

solution for any A € (0, c0).

Example 2.5.3. Consider the following fractional BVP

_ i 5 _ 7 - / B 1 , 1 _
u(o) \/EDO+u(O> - O/M (O) - 0/ (1) 101’[ (2) - /\/
5 5 / 5 124
D§+M(1) =0, |:(,bg (D(§+u(0)>:| =0, |:4)% <D(§+u(1)>:| =0,
where g =3,p=1B=2, A:%and

Through a simple calculation, we obtain
M =1, A >~ 04936, Ay ~ 04773, A3 ~ 0.5410, A4 ~ 0.3915 and A5 ~ 1.15526.
Choosing a = 141, b = 18 and ¢ = 1296, we get

flu) < f(ﬁ) ~0.07...< mm{cpp (”2‘1) ¢p (‘%2) ¢p (al3), Pp (a/\4)}

1
)

f(u(t)) > 13+ (2v/3)V/* ~ 14.36426160.. .. > ¢, (p* ' MbAs)

~ (0.1136024...; u € [0,

18

~ 1.155113195453685.. . .; u < [ﬁ’

18],

(25.7)

(2.5.8)

(2.5.9)
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F(u(t)) < £(1296) ~19.000. .. < min {cp,, (%) by (%) Ly (cA3), Py (C/\4)}

1-— 1
~ 21.64058872...; u € [0,1296]; 0 < A < (zﬂ)ﬂ =%
Then the conditions (C1i— C3) are satisfied. Therefore, it follows from Theorem 2.4.1 that (2.5.7)—
(2.5.9) has at least three positive solutions w3, u; and u3z such that
18

1 18 1
IRZW(ES 14 32" ¢(uz) and || uz ||> 1 with @(u3) < 77"



Chapter 3

Existence of positive solutions for
p-Laplacian boundary value problems of
fractional differential equations

3.1 Introduction

Last decades witnessed an increased number of theoretical studies and practical applications of
fractional differential equations (IFIDEs) in science, engineering, biology, etc. [14, 59, 62, 64, 73, 75].
In particular, fractional p-Laplacian (IFpL) has been used in modeling different problems [35].

In this chapter, we studied the following fractional boundary value problem (FBVP):

PCKDR (¢, (KDL q)) (T) + 1(T)p(q(T)) =0, a<T <],
q(@) — Fo ("*Dilq(a)) =0,
5§lq(ﬁ) =0, (3.1.1)
S0, (0) = 1dp,q() + A,

PIEKDLa() = 8}, [y (D)) (@) = 5, [o (D)) () =0,

where PVCKDT and PCKDR2, (o1, p, € R\ {1}) are the right and left sided Caputo-Katugampola
fractional derivatives (CKIFID), 2 < 01,02 < 3, ¢, is the pL operator, i.e., $, (&) = |¢ |P=2¢, p > 1,

d\*
k —
% = (Tl pdT) ’

F, is a continuous even function, p, h are continuous and positive. 7 € (2,1),0 < u <1,and A > 0.

68
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Using some fixed point theorems and under some additional assumptions, we prove some
important results and obtain the existence of at least three solutions, this problem was studied
recently in [26].

Su et al. studied the existence of positive solution for a nonlinear four-point singular FBVIP

(0, (1) (7) + (D) p(q(r)) =0, 0<T<1,
mdp(q(0)) —mdy (q'(¢)) =0, (3.1.2)

130p(q(1)) + 14y (q'(A)) =0,

by using the fixed point index theory, where 771,773 > 0, 112,114 > 0,0 < { <A < land f: (0,1) —
[0, 00) [72]. Also, he applied the theory to study the existence of positive solutions for the nonlinear
third-order two-point singular BVIP

q(0) =q'(0) = --- = q"3)(0) = q"V(0) =0, (3.1.3)
q(1) = 22 mq (A),

where 0 < Ap < Ay < -+ < Ay < 1,1 > 0 with Z;’:lz 17,-)\;’_2 < 1 [71]. Chai in [25], considered
the nonlinear FBVIP

KDL (¢p (REDG2Q)) (1) + p(T,q(1)) =0, 0<T <1,

a(0) =0, (3.1.4)
q(1) +7n ("D q(1)) =0,
LD q(0) =0,

on a cone and obtained some results and positive solutions, where 1 < ¢» < 2,0 < 77,03 < 1,
0 <0»—03—1,7 > 0and pL operator is defined as ¢,(¢) = |¢|P~2¢, p > 1. In 2018, Bai used the
Guo-Krasnoselskii fixed point theorem and the Banach contraction mapping principle to prove the
existence and uniqueness of positive solutions for the following FBVIP

(¢p (REDTLq)) (1) + p(T,q(T)) =0, O0<tT<1,
q(0) = *:Dgtq(0) =0, (3.1.5)
D3:q(0) = DJtq(1) =0,

where 0 < 0n < 1,2 <0y <2+ 0y, RLDgl+ and Dgi are the Riemann-Liouville and Caputo fractional
derivatives of orders oy, 0», respectively, p > 1, and ¢ : [11, 2] X R — R is a continuous function [13].
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Using the coincidence degree theory, Tang et al. gave a new result on the existence of positive
solutions to the FBVIP

Dg (¢,D2q) (1) = (1,q(1), D2 q(1)),
q(0) =0, (3.1.6)

Dt q(0) = Dt q(1),

where 0 < 0,00 < 1,1 <07 +0, <2and D0+, Dgi denote the Caputo fractional derivatives [51].
Torres studied the existence and multiplicity for a mixed-order three-point BVIP of FIDE evolving
Caputo’s differential operator and the boundary conditions with integer order derivatives

(¢p (D§-q)) (1) +fi(0)p(T,q(1)) =0, 0<T<1,
Dg.q(0) = q(0) =q"(0) =0, (3-1.7)

q(1) =nq'(A),

where n7,A € (0,1), 0 € (2,3] [82]. Base on the coincidence degree theory, Chen et al. gave new
results about the problem

{D“¢MD®())@ﬁﬂK)D”%)) Te[0,1],

Dy:q(0) = Dgiq(1) =0

(3.1.8)

where 0 < 07,00 <1, (1 < 01 + 03 <2) [27].

The rest of the chapter is organized as follows. Section 3.2 presents some basic definitions,
lemmas, and preliminary results. In Section 3.3, we derive some conditions on the parameter A to
obtain the existence of at least one positive solution, we derive an interval for A which ensures the
existence of p;—concave positive solutions of the FBVIP. In Section 3.4, we discuss the existence of
multiple positive solutions. Finally, we give some illustrative examples in Section 3.5.

The following technical hypotheses will be used latter.

(H1) A does not vanish identically on any closed sub-interval of (a,1).

(H2) F, is even and continuous on R, and 3 A, B > 0:

BoP~! < F.(v) < AvP 7, (veR"Y).
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3.2 Main results

We present some important lemmas which assist to prove our main results. Consider the linear
generalized BVIP associated to (3.1.1)

KD q(T) +w(T) =0, a<T<]

q(#) — F. (D3 q(2)) = 0,

(3.2.1)
5glq(ﬁ) =0,
L 9,a() — uop,q(n) = A
Lemma 3.2.1. For w € C(]), the integral solution of (3.2.1) is given by
1 ™1 — 5P1 I
a(r) = [ Gnw@de+ (S ) [ Gl ewe) e
P11 — ;P1 .

+A <p1(1—y)> +F, (w(a)), (3.2.2)

for T,¢ € ] where

1 TP1—iaP1 1 —ge1 ) 172 Cpl—l
I'(c1—1) P1 p1

gl(Tﬂ:) _ _r(}fl) (rpl—ém )0171 69171/ E<T, (3.2.3)

P1

-2
1 01 _ a1 1—ge1 \ 71 o1—1
T(-1) ( P1 ) ( P1 ) ¢, TG,

and

(1 (e (P1gn 01_2691—1
I(o1—1) p1 p1

p1_a01 o —2
Ga(7,8) = ey (Ca) L gsw (3-2.4)

P1

N -2
1 (o) (P10 \ T g
ey (252) (P52 e Tse

Proof. By applying (1.3.19), the equation (3.2.1) becomes

P11 — gP1 P11 — Pt 2
=—lo-L|— )L | ——
q() 0 1< P1 > 2( P1 >

p1*‘71 i 1 1)01— 1~
oy [, @ e (@) de
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for some arbitrary constants Iy, /1,/> € R. From the boundary conditions of (3.2.1) we get

ae) = F (w@) + (S )

- rérl) / (Tpl o = )1 ¢ tw(g) dg
(55w O ;fm)m_z eriw(e)dg

T (7P — M,
y/a< P1

=F, (w(2))+A (H)

B r(;) A (Tpl o = )1 ¢ tw(g)de
i (T‘” 9_1 ﬁpl) [F(all— 1)
el h (o ) eriwie)dg

() e [ () e o

Splitting the second integral in two parts permits us to write

a®) = 1o [(01 ) (T (N e g g

(Y v

P1

1 _ Pt 1 /301 xpr\ 012
+(o1 —1) (Tp o ar >/T <[p plgp ) éprlw(é) dg]

" <;p<11_—a:>> rml— 1) [V (/ < ;fpl >M ¢P () dg

)Ul_zéplw@) atl,
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1 /501 1\ 01—2
(PSR e déf)
T 1 _ Fp1\ P2
i / (Tppfp) () dg
_|_y<(Tpl _am)/ g2

+A <m> + F, (w(a)).

P1 __ /P
+E (w(@) + A (T“

p1(1—p)

w(g)dg

The converse follows by direct computation. The proof is completed.

Now, consider the generalized BVIP associated to (3.1.1)

q(2) — F. (PKD q(2)) = 0,
6§1q(&) =0,

65,q(2) — udy q(n7) = A,

PCKDR (¢, (PICKDT (1)) = w(T), a<T<I

Lemma 3.2.2. For w(t) € C*(]), the BVIP (3.2.5) has a unique solution

0 = [ G 00 ([ HEswis)as) ae
(S [ aatr ey ([ HiEwes) as) g
A (ZE o ([ w i ).

, &), Ga(t, &) are defined in the previous Lemma 3.2.1 and p =

P—

p

ik

T<¢,

where
(192 rpz) (c}pz aPz> =2 592_1
H(t,8) = <592 sz>gz g1
mi-n (“’2;”2) (E)™ e, g <,
Gi(t

).

PIEKDR (1) = &g, [dp ("KDIL)] (2) = &, [ (PDTL Q)] () = 0.

(3-2:5)

(3.2.6)

(3-2.7)
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Proof. From Lemma 1.3.22, the equation (3.2.5) is equivalent to the equation

P2 P2 P2 P2 2 N
d)p <P1 CK,Dal q( )) — -1 <l T > _1 <l T > 4 P2l ]II‘<72w(T),

P2 P2

for some constants Iy, 1, I, € R. Using the second boundary condition, we get

o (DY A(D) = P B ()

- <sz ;2TPZ> F(Uzl— 1) / (sz ‘;W)Q—Z ¢ tw(g)de

= - [(How@) de

Consequently,
PiKDq(e) =~y [ Ml EwE) d )
Thus, the problem (3.2.5) can be written as
DY q(T) + by (f HT,OW(E)dE) =0,  TE (a,2),

q(a) = F ("*Djiq(a)) =0,

(3.2.8)
2
5 1q( ) O’
8p,q(2) = udy,q(17) + A,
which, according to Lemma 3.2.1, has a unique solution of the form (3.2.6). O

Lemma 3.2.3. The functions G1, G and ‘H, Egs. (3.2.3), (3.2.4), and (3.2.7), satisfy the following.
(i) G1(7,8), Ga(t, ) and H(t, ) are continuous on [a,1] X [a,1].

(ii) Y(t,&) € [a,1] x [,1],

1P — ;P1 -1
Gi(1,8) < (- o [ a@oa
P — 4P 1 — e\ 1l 1 TP 3P\ 1
B (T(Ul)m > < P1 > [0y +1) < p1 ) '

01 3P1 1—1
Gr(1,8) < (‘p “p> ’ /gz . 6)d

P1 T(op—1)

1 (291 — 5101)”1—1 (Tm — 5101)”1—1
- I(o1) P1 P1 '
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o 102 — zP2\ %2~ 21
Hire) < (o ) o [

P2 — 02 <ZP2 _ am)‘le <Lpz gm)
Pl () P2 0 P2 '

(iii)) ¥(7,8) € [m,1]* 1 Gi(1,8) 20, Ga(7,8) >0, H(T,E) > 0;

(iv) Y& € ], the function T — Gi(t,&) is increasing and T — H(t,&) is decreasing. In addition,

V(t,&) € (a,1)% we have
TP1 — Pt -1
() G1(1,€) < G1(1, )

P1 — gP1

02 42\ 21
(fp Tp) H(a,6) < H(T,0);

P2 — P2

and

(v) V(t,¢) € (a,1)?, we have

p1—1 1(01-2) — p1—1
o [1—(1”)" }gl(z,c) Gt (r.8) < 2T Pgg)

1P1 — gP1 1 o —21°P1 —gf1

Proof. Using the definitions of G, G, and H, (i) and (ii) are obtained straightforwardly. For property
(iii), we only consider the case ¢ < T as the other case is straightforward. When ¢ < 7, we have

1 0 — P o g\
e e e
1(7.6) I(n—1) P1 P1
1 o1 — e\ i1 o1
o (T )

L ‘711\1_1[ 1 1 }
2( o ) o) o

20,

because I'(07 —1) < I'(01), for 2 < 07 < 3. Similarly, we can easily prove that G>(7,¢) > 0 and
0 ¢

H(T,&) =0, V(t,&) € J>. Now, for property (iv), we first check that G (7, &) is nondecreasing w.r.t.
TE].
o (P5) " et
aagrl(T, §) = _anplljl) (T"lp—lg‘“)”l gl i<, (3.2.9)
011 (Zpl—Cpl )Ul_z gn-1 T<G.

I'(o1—1) P1
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~

Thus, Gi(7,¢) is increasing with respect to T € | and therefore, G1(7,¢) < G1(1,¢), for a < 7,¢ <
Furthermore, for T < ¢, we have

HU(TE) T (g,
ot T(—-1) P2

+

(0 — 1)TP2L [ @P2 — P2\ 272 01
TETl G B

P21 ot | (€2 =T 722 gP — e 7272
pum— 27 —_— —_— —
Me-1)° ( P2 ) ( P2 > '

< P21 T (@’Pz_gm)‘TZ_Z_ (gpz _apz>02—2 o,
T(oz—1) P2 P2

and for ¢ < T, we have

H(T,E) e N L AN 01
7 — =1 )
JaT F(O'z - 1) ( P2 ) g <0

Thus, H (7, &) is nonincreasing with respect to 7. Consequently H (7, &) < H(a,{), V1,& € J. On the
other hand, when t > ¢,

Gi(t,8) _ (o1 = 1)(x = %) (1% — g)12 — (xP1 — g

Gi1(1,¢) (o7 — 1)(1Pr — aP1) (1P — EP1)oi=2 — (je1 — @p1)oi—1

o —1
(o1 = 1)(x? — ) (17 — g2 — (10— g (T )
- (op — 1)(1Pr — aer) (1P — 591)01*2 — (1P — 601)01*1

TP — ZP ”< °— e\’
—a0) — \w—ar) ’

Gi(T, (,‘) (o7 — 1) (TP — aP1) (201 — EP1)01—2 — (7P1 — FP1)oi-1 (iiiifzi )01—1
Gi(1, ‘:) (7 — 1) (1Pt — aP1) (11 — EP1)01—2 — (jp1 — Ep1)0r—1

for o > 0, we obtain

(TP — 5191)01—1
- (Zpl — apl)ﬁ*l
y (o —1) (1°1 — 2P )‘71*1 (TP1 — P1)201 (301 épl)m — (11— gpl)"l*l

( )(191 — 5191)(101 — (;‘91) ([Pl — @’Pl) -1
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that is

w01 _ae1 \ 7172 N N N -2 /s -1
(101—5191) (0-1 — 1) (101 — apl) (Lpl — CD]) 1—2 _ ([pl — é’pl)
(op — 1)(1Pr — aP1)(1P1 — EP1)01=2 — (jp1 — Ep1)or—1

X

(Tpl _ am)ﬂlfl

For T < ¢, we have

1
(tor — ae1) 172"

G1(1,8) pT et

(Tpl — 5191)‘71_1 N F(U’l - 1)

(171 — gm)tfrz

which is a nonincreasing function as 071 > 0. Consequently,

gl(Tr é) > g(i, g)

01 — ge) 17 T (e — gen )1l
( ) ( )

which implies
P11 — gP1
1P1 — gP1

Gi(1,8) > < )01_1 G1(2,6).

Using similar techniques, one can prove that

12 — P2

Mo > ( )0_17{(@,@),

P2 — P2
for a < &, T < 1. Therefore (iv) of Lemma 3.2.3 holds. Finally, for property (v), we can consider two
cases. Nevertheless, we prove the results for the case { < T only. The simpler case 4 < 7 < ¢ < I can
be treated similar arguments. When ¢ < T we have

Git(T,&) (1P —af) (e — 591)01*2 — (TP — gm)"l*z

gl(Z, (j) Tpl—lpl(a'l — 1) (0,1 N 1) (Zpl _ 591)01—2 . (291—591)0171 .

1—ar)

Consequently,
Gii(,8) (7 —am) (7 — gy
G:i(1,8) ol —1) g2 I
(1 = 1) (21 = &)™ — e —
1
- P1_gp
(01 - 1) - E;oi,gpig
1

~(n—-2)
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On the other hand,

01, (r,0) (=) _ (1= 1) [ =) — (e — g7
(Z, C) Tplflpl (0.1 - 1) (Zpl . §p1)01—2 . M

(P1—av1)

(TP1 — gP1)7172

>1-—
o (Zpl — 691)01_2
P1y 012

\eilo—2) (1= (%)

=1~ (7) ¢\
1— (%
(%)

T P1(01-2)
> —
21-(5)

Thus, the proof is completed. O

Now, consider the Banach space E = C1331( J). Suppose p“CKDgiq(T) is continuous on | for all
q € E, then from the Definition 1.3.22 and Lemma 1.3.27 we can define the norm on E as follows:

max {Ml,max
S

Pl;CKng(r)] } 2 <oy <3,
lall = o
max {Ml,r?gf ‘5p1q(r)‘ }, o =3,
in which
My = max { max|q(v)|, max|,,q(7)|, max|53,q(7)] },
and the cone

K= {q € E : qis nonnegative, increasing and p; — concave}.

Lemma 3.2.4. Assume (Hz) and let q be the unique solution of the BVIP (3.2.5) associated to a given
w(t) € CT(]). Then q € K, and the following inequalities hold for T € [do,15] C (a,1).

_ 1\ —1
qo) < ()T (PN g (3210
rgea]x q(7)l < P1 — j3P1 102 — P2 AT 3.2.10

-1 pm
— 2Pt — gP1 TE]

max[oham)] < ;

-1
apl_apl
Tg]x\é )‘<<<191—a91> /g1 )

L (m-a (o)),
X max 2.12
F(O'l — 1) ( P1 ) Te] qT (3 )

ax|q(7)], (3.211)
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te] 1P1 — jP1 3
xmax|q(T)], Vi € (23], (3.2.13)
TE
. APt g\
in q(t) > ( o e ) Mslql, (3.2.14)
where 1
P2 — P2 02—
Z(T):d)lﬂ((zpz_gpz) )’
and

o —1 P1

Sp1 P\ 2701 sP1_ spp\ 011 :
min{l"(cfl—l) (lp a7 ) ,1} <M> Z(ZO)/[: G1(1,¢) d(j}. (3.2.15)

P1 P1 — gP1

o —2 /P11 — P
Mzzrnin{l,a1 <l 4 ),

Proof. From Lemma (3.2.2), we have

a0 = [ Gi(x.5)e ( [ @ ows) ds) dz

(T2 [ ([ s ds) o

A (M) +F (d)ﬁ </;%(51,€)W(C) dé)) .

(1) The functions Gj, G» and H are non-negative (Lemma (3.2.3)-(iii)). In addition, F,(v) is non-
negative for v > 0 (thanks to (Hz2)). Thus, q is also non-negative. Furthermore, as G; is
increasing w.r.t. T (Lemma (3.2.3)-(iv), so it is the function q. To Prove that q is p;-concave, we
need to show that 5(1)1q(r) is decreasing on | (Remark 1.5.13), which can be obtained form the
negativity of the derivative

(sha(0) = —r(z’ljz) | <791;§pl>01_3 4 < / Z%(é,s)w(s)ds) az

<0.
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(2) As q is non-negative and increasing, we have

rggflq /Gl 3 bp </;H(C,S)W(S)ds> dg
+]4<::_apl>/gzl'§d)p</7{§s (s)d )dg
A <F‘:__::1> LE <¢ﬁ (/;H(ﬁ,é)w(fj) d¢§>> .

For T € [, 1], using (iv) of Lemma 3.2.3 and the fact that

5P1 NP1
Ao a

(\ - ) <1,
P1 — gP1

we get
o> [ (i) e ([ Heamorss) &
() () fovcsn [ mirs)
(191 :aF’l) 2<Tp1 _Va:i>
(B0 k(0 ([ Haw@ae) ).
Consequently,

aft — e\ 1!
q(T)><Zpl_apl> max |q(7)],

and thus, (3.2.10) hold.
(3) We have

Sha(r) =7 [ G 00 ([ HE o) as) ag

F ity [ ([ HEsweas) der

1—u)
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From Lemma 3.2.3 ((iii) and (v)), we can deduce that 5p q(t) > 0and

5;1q(r)</QU1—1 P1 G, q)p(/’]-l(fs (s) s>d§

2101 — gP1

Jop ([ M@ shle)ds) a2

0-1—1 1 [/gl q)ﬁ(/;mg,s)w(s)ds)dé

—21P1 — gf
P — Pt
( upl>/g”‘§ (/H‘fs >d€
+/\<Z"1—apl>}
P1 — HP1
al_;m_apl[/ G1(2, )¢y </;”H(C,S)W(s)ds> d¢

+/\<Zpl_apl>
P1 — HP1

(lpl o )/ Ga(7,5)d (/;’H(C,s)w(s) ds) d¢
|

Up1
(0 ([ mow@ ac) )

-1 p R
—DP1 — Pt q(l)'

Thus, we obtain (3.2.11).

(4) A straightforward calculus gives
2 _ 1 / 7o — ge\ 13 o1 /z
65,9(7) = Mo =2) )i - ¢y ([ MG s)w(s)ds ) de.

162 q <¢p</Hag

Then, we get
> /<791 Cpl>0'1 gpl*ldg,
<o ([Heowoar) o ()"
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Thus,

52 < 1 R 4 1 P e\ 712
e o] <o ([ 00w ©9) iy (5
By multiplying both sides of the previous inequality by

P2 — go2\ 271
d)ﬁ(([l)z_ﬁpz) )’
we get
2 — o2\ 271
d)ﬁ((zr)z_apz) )r?g]x’(s )’
L/ger g2\ 2l 1 o1 e\ 172
< _

using Lemma (3.2.3)-(iv), we get
2 — g2\ 271
p ((sz—ﬁpz) n;lglx‘(s H

1 N Y] o —2
< ¢y (/a H(T, &)w(?) d§> 1“((711— 0 <[p plap ) . (3.2.16)

We multiplying both sides by G (7, ¢) and integrate over | w.r.t. &, we get

o (2-5) )

<ty (o) [[amne ([ reames)
e

() o e

oo [0m0)) -

s) ds> d¢
)

o1 e\ 172
o (o) A
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1 P11 — P 012
( ) max|q(7)].

<
I'(o; —1) P1 €]

Furthermore, for T € [, o]

1 302 _ xp2\ 21 p1 _ o1\ 41 l
[ a0t ((;2_§DZ> >d§> (o) 200 [ @60

; 102 Fp2\ 271
r?g]x\églq(’f)\/ﬁ Gi(7,8)dp ((i‘pZ _gpz> ) de

TP1 _ 3Pt o1—1 1
> () Z(1) | G1(1,8) dé’maX\5p q(7)|,

1P1 — gP1 a

and

Thus, we obtain (3.2.12).

(5) From the first equation in (3.2.8), one can see that

01; CKD<71 q(7) = —bp (/ H(t,&)w(E) dg) , (2 <01 <3). (3.2.17)
Thus, \
max PuCKDTL (T)‘ < Op </ H(a,E)w(E) dg) , (2 <01 <3).

As in (2), we can deduce (3.2.13).

(6) Equation (3.2.14) is a direct consequence of the previous results.

Then, for a given [a.,1,] C (a,1), we define the cone

. al —ar \ 7
—daex: min qn)> (g ) Ml p,

and the integral operator NV, : Y — E defined for 7 € [a,,1,] by

Ni@)(0) = [ ey ([ Mo (a(o)) as) oz
-i—y(M)/QzTCd)p(/’H@s (s)p (q(s))ds) d¢

MEZE v (o ([ Ho0n@0 @@ @€)). Gaa)

When (H2) holds, we have NV, (Y) C Y and fixed points of NV, are solutions of (3.1.1). To use some
fixed point Theorems, we need to show that N, is completely continuous.

V
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Lemma 3.2.5. Assume (Hz2) is true. Then, N, : Y — Y is continuous and compact.

Proof. The continuity of N, is a consequence of the continuity and positiveness of G1,Go, H, h and .
To prove that N, is compact, let us consider a bounded subset (2 C Y. Then, there exists L > 0 such
that for any q € Q) we have |p(q(7))| < L. For any q € Q, as N is positive and G; is increasing w.r.t.
T, we have

max | Ny(q(7)) |= Na(a()-

Te]

Consequently, using the previous inequality and the hypothesis (Hz2), we get

max|NA |</gl &)y </Z’H(ﬁ,s)h(s)Lds> d¢
<LD1_apl>/gzr§¢p</”Has Lds)d@
101 — Pt
+)\< W)l) +A/ H(a &)Ld¢ =: L. (3.2.19)

Then, as in Lemma 3.2.4, we obtain ||\ q|| < M3 L, where

¥ —1
M3 = max 1, o - P1 - ,
o —2 \ 1Pt —af1

1 Zpl _ apl o1—2 L\Zgl _ apl o—1 . ! i -1
m{rmn (o) | Geaw) 200 [ @coe]

Hence, N, (Q) is uniformly bounded. Furthermore, by using Lemmas (3.2.2)—(3.2.3) and Lebesgue
dominated convergence theorem, we deduce the equicontinuouty of N, (Q). Therefore, N, is
completely continuous by Arzela-Ascoli Theorem. O

3.3 Existence of solutions in a cone

In this section, we derive an interval for A which ensures the existence of p;-concave positive solutions
of the FBVD.

Theorem 3.3.1. Assume that all conditions (H1) and (H2) hold, and that there exist 0 < {1 < {5, and
mq € (O/ M4) ’ my € (A6/ OO) s (331)
here My = min {%, %, %,Az}, A5} such that

(H3) Vq € [0, {1] we have p(q) < min {(bp (m1t7), mlﬁl};
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(Hq) Vq € [vl2, l2] we have p(q) = &p (m2l2).

Then, the FBVIP (3.1.1) has at least one p1-concave positive solution for A > 0 small enough, where

aft — e\
r), = Zpl _ ap] M2/ (3'3'2)

and

A= |4 [ 1o 0mE) o 71,

fo= K/;gxz,é)dcw(‘“‘”‘”)/ G002
<o [Haon@ae)]

% 1 P1 1 .
o [(71 —21P1 — 4P (/H G1(1,¢)dg
-1

[ t0a)e( [ noon@a)|
re= [ (P ([ )]
rsi= [y ([ o ae)]
po= [r(B22Y 20 ([ oo

] (e AL T (RO )} . (:33)

Proof. Let Oy, = {q € K : ||q|| < ¢1} and A satisfying

g

0< AL

N —

(1—p)y min{l,Z P1 } (3-3-4)

so that
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and 2A < /(1 —p). Let q € KNoQy,, ie., ||q|| = ¢1. From (H2) and (H3), we get

(00 ([ 10,010 @) dt) ) < 4 [ M@0 @) d
<mbia [ H@EhE)dz,

op ([ Mm@ @@ ac) < mbres [ Mz onEder).

But,
max | \: (q(7)) | = Ai(q()
~ [[at.00;( [ HEsnow ) as) oz
+V<tpl—apl>/gz’f§ ¢p</?-[§s S)p (q(s))ds)dé
wa(omm) v m (o [ M0 @0 @) €) ).
Then,
max | Mq(1)) | < AfflK ;Gl(i,é) d§+u<2:1:5:> /;Qz(rfé) de’)
<op( [ o om@ac)+ 3+ M4 [,one) e
Consequently,
max | Na(a(0) |< 2+ + 2 = g

Similarly, we obtain

max{ max max (5 NA( (™)},

ke{1,2} 7€]

D0 N (a(o)| b <

T€e]

Therefore, we conclude that | MV q|| < ||q||, Vq € KN9Qy,. Then, Theorem 1.5.10 implies that

i(Ny, Qp, K) = 1. (3.3:5)
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On the other hand, let us consider Oy, = {q € K : ||q|| < {2}. Then, for any q € KNdQy, by
Lemma (3.2.4) one has £, > min¢(; ;.1 q(7) = 7f2. Using hypothesis (Hg), we get

Ni(q()) > (_) [ [ 00,0005 [ m@ s ) os) oz
u(S2) [ oatn0n( [ HiE M0 (a(e) o) ag
sa(S) e n (o [ e 0m©0 @@ dc) )|

> (B2 ey 200 ([ @00
(= ot o)
> (B2 a2 [ 0600
=Yoo [0

= [lal-

Which implies that |AV,q]| = ||q|| for any q € KN QY. Hence Theorem 1.5.10 implies that
(M, 00, K) = 0. (336)

Therefore, by Egs. (3.3.5), (3.3.6) and ¢; < {», we have i(NV,,Qy, \ Q,K) = 1. By employing
Thm 1.5.11, one can see the operator A\, has at least one fixed point q € KN Qy, \ Qy,, which is
pi-concave positive solution of FBVTP (3.1.1). O

Theorem 3.3.2. Assume that all conditions (H1), (H2) and (H4) hold. Then, the FBVT (3.1.1) has no
p1-concave positive solution for A large enough.

Proof. Suppose that IN € N and (Aj); such that lim; ;o A; = +oc0 and the FBVP (3.1.1) has p;-
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concave positive solution g, (j > N), i.e

0 = [ 600y [ HE G0 (o) ds ) e
+y<T:1 _”pl> / Ga(,8) ¢p</ H(E 5)Ti(s)p (q(s)) ds) d¢
21 ( T2 k(o [ H@OME0 ) ) ).

Thus,
4i(1) > (lpl_apl) [ [ 00,0005 [ HE o0 @) o) ac
u(5) [ oatre1n( [ HiE M0 (a6 as) ag
2 () k(0 [ 0 00@0 @) a ) )]
Consequently,

SP1 _ app a—1 N

a a A a
qj(Z) > \O N /\] .

[Pt —af P1 — HP1

Without loss of generality, we can suppose that N is large enough so to get for j > N:

AP e 1-cq
N g — kP a
Aj > ]( P —ar ) <191 — P > (3:3.7)
Then, we have q;(1) > j. Consequently, lim;_, ,« ||q;|| = +co. Using (Hg), we deduce that there

exist my > Ag and £ > 0 such that p(q) > ¢, (m2l2), ¥q € [z, {2]. Again, we can choose N large
enough to get ||qj|| > £2, Vj > N. By writing m, = Ag + @ where @ > 0, we get

lajll > () > (‘j;j?“) [ [ 0,005 [ mE s ) os) oz
+y<‘p1_”pl>/ Ga(1,8) q>,,</ H(E 5)(s)p (q(s)) ds) d¢
sa(pmt) e m (o [ Ha,0n@0 @@ o) )|
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N N o—1
alt —ati\™
1P1 — gP1

N
—~
~
o
N—
N
=
2,
Q
iy
—
Nad
R
N—

> (As+ co)(
(S )G erde )op( [ i, @) o)

al — gt

o —1 }
>l + @) (5 =g ) 20( [ 916,80

aP1

n(E Y gam ey a o [ Hia o) ac )

P1 — HP1

= llq;l| (1 + @A),
which leads to a contradiction ||q;||@Ag 1 < 0. The proof is completed. O

Remark 3.3.3. Let

1 SIC) R N < C 8
PO 450 min {dy (q),q) P T 0 9y (q) 538)

If po = 0 and g = o hold, then the conditions (H3) and (H4) hold respectively. Moreover, if the
functions p and F, are nondecreasing, the following theorem holds.

Theorem 3.3.4. Assume that the hypotheses of Theorem 3.3.1 hold and that © and F, are nondecreasing. Then,
there exists A* > 0 such that the FBVIP (3.1.1) has at least one p-concave positive solution for A € (0, A*)
and has no p1-concave positive solution for A € (A*,00).

Proof. Let

Y = {)\ : the FBVIP(3.1.1) has at least one p; — concave positive solution} C R,

and A* = sup Y. It follows from Theorem 3.3.1 that Y # @ and thus A* exists. We denote by qo the
solution of FBVIP (3.1.1) associated to Ay and

K(qo) = {a €K : qt) < qo(), vr e J}.

Let A € (0,A¢) and q € K(qp)- It follows from the definition of N, (3.2.18) and the monotonicity of
f that forany 7 € |,

Na(q(7)) < Na(qo(7)) = qo(7)-

Thus, M) (K(qo)) € K(qo). Now, Shaulder’s fixed point theorem implies that there exists a fixed
point q € K(qp), such that it is a positive solution of (3.1.1). The proof is completed. ]

Theorem 3.3.5. Suppose that conditions (H1) and (H2) hold. Assume that o also satisfies:
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(Hs5) oo =@ € [0,min {kP~1,k}), k = %]\7{4;

(H6) 0o = @ € ((%)p_l,oo).

Then, the FBVI (3.1.1) has at least one py—concave positive solution for A small enough.

Proof. Firstly, from the definition of g, for all € > 0 there exists an adequate small positive number
5(€) such that

0(q) < (e + @) min {qp_l,q} < (€ + @1) min {5”_1,5},
Vq € [0,6(e)]. Then, for € = min {k”~!,k} — @1, we have
©(q) < min {k?”l,k} min {5(6)*”1,5(6)}
< min {kf’*l(?(e)p’l,kg(e)}
< min{ (2k5(e))"! ,2k5(e)}.

It's enough to take ¢; = §(¢e) and my = 2k € (0, ]\714) , i.e., the condition (H3) holds. Next, since (H6)
hold, then for every € > 0, there exists an adequate big positive number ¢, # /; such that

0(q) = (@ —e)q" ' = (@m—e) (v)"!, (9= 7b2).

286\ *

-1
Hence, for € = @0, — ( Y > , we get

24

p—1
p ) (70)" " = (206L2)P . (3:3.9)

p(q) > (

By considering my = 2A¢ > Ag, the condition (Hg) holds by Theorem 3.3.1, we complete the
proof. O
3.4 Several Solutions in a cone

In order to show existence of multiple solutions we will use the Leggett-Williams fixed point
theorem 1.5.15. For this we define the following subsets of a cone K,

0. ={qeK: gl <c},
Qy(b,d) = {q €K : b < g(q), |lal <df.

Theorem 3.4.1. Suppose that conditions (H1) and (H2) hold, if there exist 4,b,c with 0 <4 < yb < b <cg,
such that
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(H7) p(q(7)) < min {¢p (m1a),mé} for (t,q) € ] x [0,4];

(H8) 9(q(T)) = dp (m2yb), for (7,q) € [ao,1o] X [7b, b);

(H9) ©(q(t)) < min {¢p (mic),mic} for (t,q) € ] x [0,c];

(H10) 0 < A < L8 min {1, 521,

where the constants my and my are defined in (3.3.1). Then, the FBVIP (3.1.1) has at least three positive
p1-concave solutions qi, qp and qs satisfying ||qi|| < & b < @(qn) and ||qs|| > & with ¢(qz) < b7y for A
small enough.

Proof. We prove that, the FBVIP (3.1.1) has at least three positive p;-concave solutions for A > 0
small enough. By Lemma 3.2.5, V) : Y — Y is completely continuous.

Let ¢(q) = min¢|; ;. q(7). Obviously, ¢(q) is nonnegative, continuous and concave functional on K
with ¢(q) < ||q]|, for q € Q. Now we will show that, all conditions of Theorem 1.5.15 are satisfied.
Suppose that q € Q, this is, ||q|| < ¢. For T € ] by Eq. (3.2.18), Lemma 3.2.4, 2.2.6, we acquire

max | M) (q \—/91 G)dpq(T (/%Cs ())ds)d(j

Te]
+y<‘pl_“m>/gng¢p</ﬂgs (s)p (q(s)) ds>dg

wa(S) e (o [ me0m@0 @@ o) ).

From (Hz2), (H9) and (H10), we get

max | NV, (q / gi(1, dDﬁ(/aZ%(&,s)fi(s)p(q(s)) ds> de

T€e]
<‘“‘““>/gﬂ¢¢p(/ms o a(s)) ds ) de

+;+Aéhum@mapm@»dc

< mlc|:</;gl(zlg)d€
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eu(Soo) [aamerde o ( [ i onew)
+A/;H(a,é§)ﬁ(’§) dg} +2

?[(/;gl(z,g)dg

(5= [ aatmerac)o( [ Haome o)

A3 [ Haon@ e+ 5

and

57(
ma{ s, ma b Vi) may

PiCKDY N (q(T ))(} < llqll-

Therefore, we have

IMag(D)l <, (Vg€ Q).

This implies that NV, : Q. — Q.. By the same method, if q € Q, then we can get ||N,q(7)| < 3,
therefore (D2) has been checked. Next, we assert that

{a€0,(m.0) : glq) > 1} £ 0

and ¢(Na(q)) > 7bVq € Qp(7b,b). In fact, the constant function 257 € ) (7b,b) and ¢ <7b+b> >
vb. On the other hand, for q € Q, (b, b), we have

b < g(q) = ming(v) < gl =b, (V¢ € [a.,.]).

Thus, in view of (3.2.18), Lemma 3.2.3, 3.2.4, 2.2.6 and (H8), we have

oNa) = min | [ 610005 [ HE )0 (a(s) o) g

tan o

(S [Caatr 0w ([ HE )0 (als) ds) g
A (SEE e m (o [ 10 0m@0 @) ) )]
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> 7| [ 600005 [ @m0 (a(s) ds) de
n(S2) [ aatr0n( [ e Moo (a(e) o) ag
A (S0 k(o ([ om0 0@ ac) )|
smaf() 2w [0
Ao (o]
e[y (B=) " 20 ( [ o
ol ]

= b.

Thus, (D1) has been verified. Finally, we need to show that if ¢ € Q,(vb,b) with [N'Aq| > b,
then ||[N,yq|| > 7b. In fact, to see this, suppose that q € O, (b, b) with ||[N,q|| > b, then through
Lemma 3.2.4, we have

¢(Miq) = min (Mq)(7) = 7[Nagl| > 7b.
Thus, (D3) is satisfied. Hence, an application of Theorem 1.5.15 completes the proof. O

Corollary 3.4.2. Suppose conditions (H1) and (H2) hold. If there exist constants
O<7’1<b1<’)’b1<1’2<b2<’yb2<'--<1’n,
for 1 < j < n—1and the following conditions are satisfied:

(H11) p(q(7)) < min {b, (mirj) ,mr;}, for (7,q) € ] x (0,7,
(H12) p(q(7)) > &y (m2bj) for (t,q) € [0, 1] X [y, byl;

(H13) 0 < A < U0 max {1, 01,
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then, the FBVIP (3.1.1) has at least 2n — 1 positive py-concave solutions.

Proof. By the induction method, we get the proof. O

3.5 Applications
In this section, we give some examples to illustrate the usefulness of our main results.

Example 3.5.1. Let us consider the following FBVIP
pz;CK'DZE (d)p <p1;CK'DZZq>> (1)

3/2
1" =0, e < T<e?

* V(22 —In(1)) (In(t) — 0.9)
Pl;CK’DZqu(e)‘ —0,

q(e) —
82.q(e) =0, (3-5.1)

53.q(e?) = 38k q(es) + A,
pl;CK’DS/fq(e ) _51 ( (Pl CK’D5/2 )>
e

=& (bp (PDY2q) ) (¢2) = 0.

ere | = |e,e°|, 00 = 0p = 5 € =5 € —es , C e put
Here | ? 3€(23,p= 2 0,1), 7 €] e”?,e] C . We p
p1 =05€R\{1},pp =13 R\{1},p=3andsop =3, A:%,B 1 "1CKDS/2andp2CKD/2 are
the left and right-sided CKFD, F,(v) = /| v | and

1
V(22 =In(7)) (In(t) —0.9)

We can easily show that (H1), (Hz2) hold and from (3.3.8), we get p(q(7)) = (q(7))"? satisfy

A7) =

iy Pt -0
0 min{o3@.a} T min{ A q]
q
3 1
Poo = lim ©(9) =1 S i =
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TABLEAU 3.1 — Numerical values of fa’ G1(1, &) dE, My, 7, fa’ Go(1, &) dg, f; H(a,&)h() dE and
dp (f;H(li,é)ﬁ(C) dC) in Example 3.5.1 for T € J.

T i Gi(Lg)de M ¥ Jy 6,0 de [T H@,OE)AE by (fy H(2,8)R(E)dE)
2.7183 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
3.0377 0.2357 0.0039  0.0011 0.3462 3.7320 13.9275
3.3947 0.5121 0.0085  0.0025 0.6944 10.0873 101.7541
3.7937 0.8293 0.0138  0.0040 1.0416 18.4145 339.0940
4.2395 1.1850 0.0197  0.0057 1.3835 28.8166 830.3948
47377 1.5738 0.0261 0.0076 1.7148 41.5311 1724.8351
5.2945 1.9852 0.0329  0.0095 2.0276 56.8307 3229.7341
5.9167 2.3994 0.0398 0.0115 2.3105 74.9520 5617.7976
6.6120 2.7785 0.0461 0.0133 2.5445 95.9883 9213.7513
7.3891 3.0207 0.0501 0.0145 2.6809 119.6935 14326.5251

0.06 T T T T T T T T T

FIGURE 3.1 — 2D-graph of M for T € [e,e?] in Example 3.5.1.

TABLEAU 3.2 — Numerical values of A1, Ao, A3, A4, As, Ag and My in Example 3.5.1 for T € |.

T Al A2 A3 A4 A 5 A6 M4

2.7183 Inf Inf Inf Inf Inf Inf Inf

3.0377 0.178637  0.585071  0.179564  0.043506  53.867322  0.071800  0.043506
3.3947 0.066090  0.045238  0.011463  0.005955  1.916555  0.009828  0.005731
3.7937 0.036203  0.009195 0.002150  0.001787  0.240558  0.002949  0.001075
4.2395 0.023135  0.002839  0.000621  0.000730  0.051977  0.001204  0.000311
4.7377 0.016052  0.001104  0.000227  0.000351 0.015226  0.000580  0.000114
5.2945 0.011731  0.000499  0.000097  0.000188  0.005456  0.000310  0.000049
59167 0.008895  0.000252  0.000047 0.000108  0.002278  0.000178  0.000023
6.6120 0.006945 0.000140  0.000025 0.000066  0.001090  0.000109  0.000012
7.3891 0.005570  0.000085  0.000015 0.000042  0.000612  0.000070  0.000007
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0.6 T T T T T T T T 0.045

0.04

3 0.035

04 —A 003F

v A Ay !
My=min{ —,—, — Ay A
f mln{4 TR J}

|

0.2 0.015

001

\; 0.005

L " L
3 35 4 45 5 55 6 6.5 7 75 3 35 4 45 5 55 6 6.5 7 5

(@) A; (i=1,2,3,4,5) (b) My

FIGURE 3.2 — Graphical representation of A; (i = 1,2,3,4,5) and My for T € | in Example 3.5.1.

Then obviously, Z(i,) ~ 0.05549,

. A1 Ay A
M, = min {41 TZ’ 73 A, A5} ~ 0.00007,  Ag ~ 0.000007.
Tables 3.1 and 3.2 show the numerical results in Example 3.5.1 for T € J. So by assume that A = 1.5
and ¢ = 12, all conditions of Theorem 3.3.1 hold, then we can choose ¢, > ¢; and for A satisfies

0<A< %(1 — )61 min {1 P } = 24542789 < {5,

701 — e

11— Pt
2A<> ~ 3.42259 <12 =/,,
P1 — HP1

and 2A < /(1 — u) = 10.5 such that
Qp={qeK:lqf <h}, D={qeK:|qll <f}.

Figures 3.1, 3.2 and 3.3 show graphical representation of the variables in Example 3.5.1 for T € J.
Then, we can show that, the FBVP (3.5.1) has at least positive solution q € KN (Qy, \ ,) for A
small enough.
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60

FIGURE 3.3 — 2D-graph of Ag for T € | in Example 3.5.1.

Example 3.5.2. Let us consider the following FBVIP
S 1y (99
+5\i%1n(r)go(q(r)) =0, 1<t<e,
q(1) — F ("DY2q(1)) =0,
61q(1) =
31q(e) = 301q(Ve) + A

Pl;CKDi/fq(e) =0,

(3-5-2)

_(56+ [(I)p (pl;CKrDi/fqﬂ (1) =0,
&l

Here | = [Le], 01 =0» =3 € (2,3, u € (0,1), n—fe], [a0,16) = [\/e,v/e] C J. We put
p=

~

p1 =05 € R\ {1}, pp =2 € R\ {1}, 5 and sop=23 A=3B=1 eCKD2 and PiCKDY2 are
the left and right-sided CKFD, F,(v) = /| v | and A(T) = % ln( ), and
692, q<1
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TABLEAU 3.3 — Numerical values of fa’ G1(1, &) dE, My, 7, fa’ Go(1, &) dg, f; H(a,&)h() dE and
dp (f;H(&, () dC) in Example 3.5.2 for T € J.

T i Gi(Lg)de M ¥ Jy 6,0 de [T H@,OE)AE by (fy H(2,8)R(E)dE)
1.0000 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000
1.1052 0.0602 0.1059  0.0307 0.0384 0.0119 0.0001
1.2214 0.1299 0.2284  0.0662 0.0771 0.0793 0.0063
1.3499 0.2091 0.3677  0.1065 0.1157 0.2572 0.0661
1.4918 0.2975 0.4325 0.1253 0.1539 0.6196 0.3839
1.6487 0.3942 0.4325 0.1253 0.1913 1.2649 1.5999
1.8221 0.4975 0.4325 0.1253 0.2273 2.3154 5.3612
2.0138 0.6046 0.4325 0.1253 0.2610 3.9084 15.2758
2.2255 0.7105 0.4325 0.1253 0.2913 6.1656 38.0151
2.4596 0.8056 0.4325 0.1253 0.3162 9.1216 83.2040
2.7183 0.8654 0.4325 0.1253 0.3307 12.5716 158.0444

0.45 T T

041 1

035 1

0251 1

Mo

0151 1

01 1

1 12 14 16 18 2 22 24 26 28

FIGURE 3.4 — 2D-graph of My for T € [1, €] in Example 3.5.2.

Through a simple calculation, we have [{ H (e, &)A(&) dZ ~ 12.5716,
3
2P — P n-1 025 _ 1\ 2
Tables 3.3 and 3.4 show the numerical results.

§ A Ay A
M, = min {41 TZ' 73,/\4, A5} ~ 0.001499,

and Ag ~ 1.583636.
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FIGURE 3.5 — Graphical representation of A; (i = 1,2,3,4,5) and My for T € | in Example 3.5.1.
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Figures 3.4, 3.5 and 3.6 show graphical representation of the variables in Example 3.5.2 for T € J.

Choosing 4 = 1072, b = 1

get

0(q) < 9 (1072) =6 x 10* < min { ¢y, (dmy) ,dm; }

107

c = 10°, m; = 0.001 € (0, My), my =

im; =8 x107* € [0,107%],

1/4
0(q(1)) > 5+ (myyb)t/* =5+ <0.1253 x 13 x 10) ~ 1.1570 > ¢, (ybmy)

11

13 € (Ag,00) = (1.583636, ), we

11
=~ 0.739467251 € [10% 10] ,

0(q(1)) < p(10*) =15 < min {$, (cm1), e} = b, (emy) = v/8000.001q € [0,10%),

TABLEAU 3.4 — Numerical values of A1, Ao, A3, A4, A5, Ag and My in Example 3.5.2 for T € |.

0< AL

(1

— 1)
2

o

4 o 25%10°2.

T A] AV A3 A4 A5 A6 M4

1.0000 Inf Inf Inf Inf Inf Inf Inf

1.1052 56.016486  16.599423  46453.302726  5493.069851  1132.699598  7060.155197  4.149856
1.2214 8.405999 7.690366 487.818288 123.697821 243.285192 158.986839 1.922592
1.3499 2.592400 4.749445 28.980434 11.764874 93.355843 15.121205 0.648100
1.4918 1.075949 3.242105 3.526105 2.026594 54.177100 2.604749 0.268987
1.6487 0.527061 2.217810 0.641322 0.486300 37.060645 0.625034 0.131765
1.8221 0.287924 1.382433 0.152208 0.145124 23.101100 0.186526 0.071981
2.0138 0.170572 0.744218 0.044104 0.050933 12.436232 0.065463 0.022052
2.2255 0.108126 0.361888 0.015127 0.020467 6.047314 0.026305 0.007563
2.4596 0.073086 0.175974 0.006109 0.009351 2.940615 0.012019 0.003055
2.7183 0.053030 0.094769 0.002998 0.004923 1.583636 0.006327 0.001499
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Then, the conditions (H7),(H8) and (Hg) are satisfied. Therefore, it follows from Theorem 3.4.1 that,
the FBVP (3.5.2) has at least three -concave positive solutions qi, q» and qs such that ||q; || < 1072,

157 < ¢(q2) and [|qs|| > 107> with ¢(qs) < fg7r-

1200 T T T T T T T T

1000

800 [

£ 600

400

200

0 L L L g |
1 12 14 16 18 2 22 24 2.6 2.8
T

FIGURE 3.6 — 2D-graph of Ag for T € | in Example 3.5.2.

We want to inform the reader that, the data represented in the tables and curves mentioned and
shown in both Example 3.5.1 and Example 3.5.2 have been set by using MATLAB.

3.6 Conclusion

The chapter presents a new boundary value of two-sided fractional differential equations involving
generalized-Caputo fractional derivatives which we investigate the existence and the multiplicity of
p-concave positive solutions of it. We made some additional assumptions to we prove some important
results and obtain the existence of at least three solutions by using some fixed point theorems. this
results can extended in some works such as [68, 74, 75].



Chapter 4

Existence and uniqueness of solutions for
p-Laplacian boundary value problems of
fractional impulsive differential
equations

4.1 Introduction

In this chapter we focus to deal with the existence and uniqueness results for boundary-value
problem of following nonlinear p— Caputo fractional impulsive differential equations:

2GDE (p(6)py (MGDL 1)) (1) + (D, (u(h) = fltu(t)) a<i<T,

A(u(ty)) = I,} (u(te)), App (Wl?Cthm) (t) = I,f (u(ty)),k=1,2,...,m (4.1.1)
=

1 C
DR u(T) =

u(u) =ug+A

By () )|

where p,p* > 1,0 < «,B,7 < 1,¢, is a p -Laplacian operator, s(t),o(t),1(t) € C([a,T],RY), f €
C([a,T] x R,R), up,u1,A€R, fork=1,2,...,mi=1,2, I,i EC(RR),0<a=ty<h<--<
e <o <ty <tpyr=T.Au(ty) =u(ty) —u(t;),u(t) and u (t, ) denote the right and the left
limits of u(t) at t =ty (k =1,2,...,m) respectively and A¢,, (¥'4D% u) () has a similar meaning
for ¢, (YGD% u) (ty).

Through the last decade of the past century, the theory of differential equations that involve
fractional derivatives of non-integer order has witnessed a wide intensive improvement and many
applications such as physics, mechanics, electricity, control theory, rheology, signal and image
processing, aerodynamics, and other fields. This field has attracted the attention of many authors
constantly in the study of fractional differential equations is based upon that, the fact of fractional
calculus service as a great tool in common usage for the applications of such constructions in

101
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various sciences, the description of properties of diverse materials, processes and important part of
the physical mathematics and also a large part of the literature is related to fractional differential
equations. Moreover, the fractional-order models are more represents powerful tools, factual, and
usefulness than the integer-order models. For more details and applications about fractional calculus,
see[17, 19, 42, 49, 59, 62, 64, 70, 79, 88] and references therein. However, the need to describe more
accurately these phenomena paves the way to suggest several types of fractional operators.

Very recently, Almeida in [11] given a version generalized of Caputo FOD with some interesting
properties. For some particular cases of 1, one can realize that ¢—Caputo FD can be reduced to
some well-known classical kinds of Caputo fractional operator [414, 45, 50, 54, 70]. Models based on
generalized fractional derivatives may be more accurate than the models based on classical fractional
derivatives.

At the same time, the fractional calculus and p-Laplacian operator appear naturally in the applied
fields of sciences and is extensively used in the mathematical, modeling of physical and natural
phenomena such as turbulent filtration in porous media, blood flow problems, rheology, modeling
of viscoelasticity, and material science, it is worth studying the fractional p-Laplacian differential
equations. As is well known, the formulation of the ordinary p-Laplacian operator was put forward
by Leibenson in 1945 [51], there are numerous research of fractional boundary value problems with
p-Laplacian operators have been established ( [13, 27, 53, 71, 72, 81, 82, 86]).

There are many processes and phenomena in the real world, which are subjected during their

development to short-term external influences. But, this duration is negligible compared with the
total duration of the studied phenomena and processes. Therefore, it can be seen that these external
effects are "instantaneous"”, i.e. they are in the form of impulses. Furthermore, the differential
equations with impulsive effects arise from many phenomena in the real world and describe the
dynamics of processes in which sudden, discontinuous jumps occur.
For the best background concerning the basic theory and some applications of impulsive differential
equations, we refer the interested readers to [20, 29, 30, 32, 39, 40, 56, 76, 77, 78, 80]. In the literature,
there have been many different tools and approaches to the study of the existence of solutions to
impulsive fractional differential equations, such as topological degree theory, fixed point theory,
upper and lower solution’s method, monotone iterative technique and so on (see, for example,
[7, 10, 15, 28] and the references therein).

Recently, L. Menasria et al [61]. By virtue of variational method and critical point theory, they
investigated the existence of weak solutions for a p-Laplacian impulsive differential equation with
boundary conditions

)= f(tu(t) 0<t<T,
),k=1,2,...,m, (4.1.2)

— (PO ()" (£) +s(£)py (u(t
App (1) (t) = I (u (tx
u(0) =u(T) =0,

where p > 1, ¢, is a p -Laplacian operator, s(t),po(t) € L*([0,T]), f € C([a,T] x R,R), for k =
L2,...,m, L € CRR),0 =1t <t < - <t < - <ty <typ =T A(pp(u'(t))) =
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¢p (' (57)) —p (' (£7)) ,u (t]) and u (¢, ) denote the right and the left limits of u(t) at t = t; (k =
1,2,...,m) respectively.

In [55] Z. Liu, L. Lu and 1. Szant6 considered the solvability of the fractional differential equation
model

CDE, (¢ (SDE.u)) (1) = f(tu(t)) 0<t<1,
A (u (tk)) = Ik (M (tk)) ,Aqu (C[Dﬁu) (tk) = bk,k = 1,2,. ..,m, (413)
u(O) = Mo,CDa M(O) = Uy,

1,1 < a+pB,7v = 2,¢, is a p -Laplacian operator, f € C([0, 1]
R,R), up,u;, A €R, fork=12,....mi=12 LeCRR), 0=(H<hHh < <K< <
tn < tpy1 = 1. Au (tk = 2_
of u(t) att =t (k = 1,2,...,m
oo (D) (1),

By applying the Banach contraction principle, they obtained some results on the existence and
uniqueness of solutions for the model.

The survey chapter is organized as follows. In Section 4.2, we present some background material
for our problems. In Section 4.3, by applying Schauder’s, Schaefer’s fixed point theorems, and
Banach contraction mapping principle, we will prove the existence and uniqueness of solutions for
the problem (4.1.1). Finally, two examples are given in Section 4.4 to illustrate the usefulness and the
impact of our main results.

where p > 1, 0 < a,8,7 =
u(t

) —u (tk_ ),u(tf) and u (t;) denote the right and the left limits
m) respectively and A¢, (D% u) (t;) has a similar meaning for

4.2 Preliminaries Notes on Fractional Derivatives and background mate-
rials

In this section, we introduce some definitions and preliminary needed in our proofs later.

Lemma 4.2.1. Let ¢, : R — R be a p-Laplacian operator, ¢,(x) = |x|P~2x, x € R. Then Lo,(x) =
(p = D[P (x #0if1 < p < 2).
The basic properties of the p -Laplacian operator are the following:

1. The p-Laplacian operator is a homeomorphism from R to R and its inverse is ¢y« (x) = |x|P"~2x , with
* p

P =33
2. If1<p<2,xy>0,|x|,|y| =2m >0, then
|0p(x) = p ()] = (p = 1)m" 2 |x —yl.
3. If p 2 2, |x], ly| = M, then

|¢p(x) — Pp(y)| < (p—1)MP2|x —y].



4.2. Preliminaries Notes on Fractional Derivatives and background materials 104

In this section, we stady the existence of solutions and uniqueness results of (4.1.1) and prove it,
wich has integral an representation include the inverse of a given Nemytskii operator.
Before starting and proving the major results, we shall give and introduce the following lemmas

4.2.1 Fractional functional differential equations

Lemma 4.2.2. Let « € (0,1), Y € C"(J) and w € C(J,R). Then the linear initial value problem

P1,C Pa —
{ | fpfu(t> - w(t) a<t<T, (4.2.1)
u(@) =u, a>a,
has a unique solution u € C(]J,R) defined by the integral structure
) = o~ s [ REW@ (D6 + s [ HE W0 — () (s

Proof. By applying Lemma 1.3.28 and 1.3.25 in Lemma 1.3.29, the equation (4.2.1) is equivalent to the
following integral equation,

) = =) + 7 [ WO =90 s, (4:22)
boundary condition of (4.2.1) permit us to deduce the value,
(o) = = i [ WO~y hE)s
then, the unique solution of (4.2.1) is given by the formula,
u(t) = g — / PA(s) (9(2) — 1(5))" (s)ds + —— / 91(5) (91(8) — 9(s)* h(s)ds.
O
Lemma 4.2.3. Let B € (0,1), o € C"(J) and @ € C(J, R). Then the linear initial value problem
¥2,C PP —
{ u(T?— ui,) Tci(t% et (4-2.3)

has a unique solution u € C(J, R) defined by the integral structure

) =~ g7 [ PO 9D (s + i [ 936 (12(9) — ya() (o)

Proof. By applying Lemma 1.3.28 and 1.3.25 in Lemma 1.3.29, the equation (4.2.3) is equivalent to the
following integral equation,

1 T
u(t) = —u(T)+ gy [ 446 (9a(s) — ()P 0 (s)ds, 424
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boundary condition of (4.2.3) permit us to deduce the value,

T) = LMy ) o(s)d
~u(T) = ur = g [ 9A6)Wals) — 91 ()i

then, the unique solution of (4.2.3) is given by the the formula,

) =~ g7 [ PO 9D (s + i [ 936 (12(9) — ya() (o)

4.3 Major results

Lemma 4.3.1. Let « € (0,1] and h : | — R be continuous. A function u € PC(J,R) is a solution of the
fractional integral equation

pr-1
o+ A |y [ RO T) — (5)) ) () ds
uh)={ i / P11 — 1(5)* h(s)ds 431
k
Z H(t—t;), forvte],k=0,1,2,...,m

if and only if u is a solution of the following impulsive problem

WD u(t) =h(s) a<t<T,

Au(ty)) =1 (u (b)), k=1,2,...,m (4.3.2)
u(a) = uo + AP0 w7

where H the Heaviside function and I} = 0.

Proof. Let h € C(J,R). Assume that u(f) is a solution of impulsive problem 4.3.2 . If t € [a, ;] then

WCDY u(t) = h(t) (4-3:3)

by applying Lemma 4.2.2 we get

) = 1) + a7 [ @0 — (6D (sl

If t € (t1,1,] then
PISDY, () = h(t) with Au () = I} (u (1))
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then Lemma 4.2.2 implies

u(t) = u(t!) = 55 /“was )2(6) = (6D h(s)s + s [ B0 = a9 (o),

—u(t) + 1 ()~ g [ Gl <>>“—1h<s>ds
+—/ #(5) (1 () — 1 (5))* " h(s)ds,
= u(0) 4 1 000 + 5 [ W) = 20 ()

If t € (tp,t3] then by using Lemma 4.2.2 one more, we get

u(t) =t - 15 /”was )(0) = ()" M)+ s [ O — (o) (),
=) + 8 (1)~ iy [ O <>>Hh<s>ds
+ / Y(s) (i (1) — 1<s>>“*1h<s>ds,
= ua)+ 1 0 (00)+ B (0 (2) + 7 [ 9010 = (9" (),

Ift € Jy,fork=1,2,---,m, then again from Lemma 4.2.2 and note that the boundary value condition

pr-1

= A
u(a) = ug+ o

By )|
one can see that
k
@+ Y1 () + [ 9L @10 — a5 h(s)es
j=1
.. by simple calculations we get:

pr—1

@) =m0+ s [ BB @T) — ga(6))H0(s) (o) s

hence, from the proposition 1.1.3 we get (4.3.1).
p—1

Conversely, assume that u satisfies (4.3.1). If t € [a,t1] thenu(a) = ug+A . T

BT (t) | u(H)] 1\
and using the fact that ¥1°4D%, is the left inverse of ¥, 7% we get (4.3.3). If t € Ji,k = 1,2,

and using the fact of the (-C) Caputo derivative of a constant is equal to zero, we obtain
YGDY u(t) = h(t),t € (ty, tyy1) and A(u(ty)) = I} (u(ty)). This completes the proof. O
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Lemma 4.3.2. Let ¢(t) € C(J,R),a, B € (0,1]. Then the fractional impulsive differential equation

0CD ( (H)pp (PGD%u)) (1) = @(t), t € ]t # i,

A (1)) = 1} (u (80)), Agy (WD (1)) = B@(t)) k=12 om, (5
u(@) = wo + A [Ty [u ()| WD (T) =

is equivalent to the following integral equation:

pr—1
| [ O - mE e epte
t
u(t) = +W j P1(8) (P1(8) — P1(s)* Py (F(s))ds, (4.3.5)
k
+Y I (u(t))H(t—t) te]k=0,1,...,m
j=0
where .
| e <u1>+%ﬁ) | (0 @a(r) = () g(r)ar
S(t) = — k , (4-3.6)
)| + Y Pu()H(E—t), te Lk=01,...,m

j=0
H is the Heaviside function and I}, = 0,i=1,2.

Proof. Let a,p € (0,1] and ¢ € C(J,R). Let v(t) = ¢, (¥GD* u(t)), then from 4.3.4 we get the
following impulsive problem

PCDL p(Ho(t) = @(t) a<t<Tt 7& th, (4-3.7)
(U (k) =buk=1,2,. (4.3-8)
o(T) = ¢p (u1), (4.3.9)

where b, = I,%(u(tk),k =1,2,...,mbp=0
Then by applying Lemma 4.2.3, (4.3.7)-(4.3.9) are equivalent to

p(T)gy (1) + iy [ H4(DP2(0) — 2 glm)ar
p(t)o(t) = k (4.3.10)
+ Y bi(u(t)H(t—t), t€ Jk=1,...,m
pry

Hence, by identification v(t) = ¢, (VWGD% u(t)) = F(¢(t)), t€ [k =0,1,2,...,m, the problem
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(4.3.4) is equivalent to the following:

WD u(t) = gy (F(g(1)), a<t<Tt#b,
A (k) =1 (u(t)) k=1,2,...,m,

u(a) = AR TOIE 0

Then, by applying Lemma 4.2.2 again, we get the desired result.

b=T

4.3.1 Existence and uniqueness results

108

(4.3.11)

Lemma 4.3.3. Assume that f € C(J] x R,R). Then u(t) € PC(J,R) is a solution of the boundary value

problem (4.1.1) if and only if u(t) is a solution of the integral equation

*

w0+ gy [T 95) (9a(T) — 9alo) 7 () [u(e) s
w) =1 e [ O~ 96 gy BN u(s)ds
k
+Y I (u(t))H(t—t) te]k=01,...,m
j=0
where
[ D)+ g [0 - gale) W (D
SNM(t):m k ,
+Z(;]Ij (u(tj)H(t—tj), teJk=1,...,m
£

and N is the Nemytskii operator associated to (4.1.1) defined by

N(u(t) = f(t,u(t) —s(t)pp (u(t)), tet#t, fork=12,---,muec PC(],R).

Now, we consider the integral operator £ : PC(J,R) — PC(],R) as

T 1 p -1
o A |y |6 (1) = 9a() T (s) (o))" ds
Lu(t) = by [ HEOWE) ~ 96 gy GNu())ds
_,VE H(t—t) te]k=01,...,m

Clearly, a fixed point of the operator L is a solution of the problem (4.1.1)

Lemma 4.3.4. The operator L : PC(],R) — PC(],R) is completely continuous.

(4.3.12)

(4.3.13)

(4.3.14)

(4.3.15)
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Proof. Firstly, we will prove that, the operator £ : PC(J,R) — PC(],R) is continuous. Let {u,} <
PC(],R) be a sequence with u, — u in PC(],R), one can see that in view of the hypothesis of
continuity of f(t,u), I,i, for i = 1,2 and the first item of Lemma 4.2.1

pr-1

! 1
r | 93O @a(T) = a(s) 1 (5) lua(s) P ds
Bim Luy(f) = lim + e / $1(s) (1 (8) — P1(5))* ' Ppr (SN (5))ds
k
Z ( n ) (t_tj)/

ug+ A

pe—1

= A s [ D) = () () () s

ey [ PO — 16D gy (N (5) s
+211 (un (t;)) H(t — t;) = Lu(t),

uniformly for t € J, k =0,1,...,m. This shows that £ : PC( J,R) — PC(],R) is continuous.

Next, we show that £ is compact, let QO = {u € PC(J,R), || u ||[< R}, then from the continuity of
f and I, there exist Mo, M1, M, > 0 such that | f(t,u(t) |< My and | I (u(t) |[S M; (k=1,2,--- ,m,
i=1,2)fort € ] and any u € (). Then we have

[5NU(E) | = i [P0 () + g5 [ 50 0a(0) = 9ale))PF () = () (u()) e
+i1j2(u(tj)H(t—tj), te JLk=1,...,m|, (4.3.16)
j=0
< s (p(T)e, [ HOW@06) — 207 (| Fr () | +5(2)gy (| u(0) ]) de
FY 1 Pult) r),
j=1

My + MsRp—1

T(B+1) ($2(T) — ¢2(a))? +mMz> =1,

< My (p(T) [ 1 +
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where M3 = , M5 = max;cj(s(t), My and M, are given above, which implies that,

mmtel
p*-1 m
rcu<>r<ruo\+W\ / V) (Wa(T) = 4a(9)) () ()" s+ 1 1wt |
£
1 [ PO = 126 gy (SN )] s
pr-1
< i |+ 1A L5 (0a(T) = a(a))7 + M+ s (1) = )L = L,

here My = max¢;7(f).

Then, we get that | Lu |< L* for any u € Q). This means that £(Q) is uniformly bounded in
PC(J,R).

Next, we need to prove that £(Q)) C PC(],R) is equicontinuous in J; by PC-type Arzeld-Ascoli
theorem, for that let u € Q) and 7y, 72 € [a,#1] such thata £ 73 < 1» < 1, then we have

| Lu(m) — Lu(my) |= \r(l) [ 916 (1) = (6D = (alm) = 91(6)) 1) ¢y (BNu(s)) s
b [ RO — ) gy (3N(e)
- LFTDZ; </ 91 ((91(m) = @) = (r(m) = ga(s))* ") ds

+ [T RO - () )

f1
= ?7(“) 2 (W1(2) — p1(1))" — (Y1(m2) — ¥1(2)" + (P1(11) — P1(a))") -

Then, simalarly for the interval Ji, ty <71 < T2 S g1, k=1,2,--- ,m we get

L1

| Lu(t2) — Lu(T1) |[= (@) 2 (n) —¢1(m)" — (1) — ¢1(a)" + (P1(1) — ¢1(a))") .

As 1 ()" is uniformly continuous on J; and 7, — 7y, the right-hand side of the above inequality
tends to zero. Therefore T(Q)) is equicontinuous. Therefore, the PC-type Arzeld -Ascoli theorem
permit us to say that £(Q) is relatively compact in PC( ], R). O

In order to stady the existence and uniqueness results of solutions to problem (4.1.1), we list the
following assumptions that:

(Hy) f : ] x R — R is continuous, there exist nonnegative constants ,e € R, 0 < ¢ < p — 1 such
that |f(t,u)| < r—i—e]u\” teJ,uelR;

(Hp) fork =1,2,- ,i=1,2, IZ € C(R,R), there exist constants r,¢ > 0,0 < ¢! < 1 and
0 < ¢2 < p— 1 such that |Il( )| < rk—i—ek]u\‘)k,u eR.
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(H3) f : ] x R — Ris continuous, there exist nonnegative constants 7,¢, R € Rand0 </ <p—1
such that |f(t,u)| <r+elul’, t € J,u [0, R];

(Hy) fork=1,2,---,m,i=1,2, I,i € C(R,R), there exist constants r;;, ef(, R120,0= E,% < 1and
0 <2 < p—1such that | (1) < 7l + el |ul%, u € [0,R4];

(H3) f : ] xR — R is continuous, there exist nonnegative constants r,e,R; € R such that
|f(t,u)| <r+elulp~1, te],uecl0,R);

H}) fork=1,2,---,m,i=1,2, Il € C(R,R), there exist constants r,,e{, R; 2 0and 0 < /} < 1
such that |I/(u) < 7l +el|u|P~1,u € [0, R4];

(Hs) f: ] x R — R is continuous, there exist nonnegative constant L € R such that

|f(t,u) — f(t,0)| = Llu—o|, teJ,uvelR;
(Hg) fork=1,2,---,m,i=1,2, I,i € C(R,R), there exist constants L;; > 0 such that
[i(u) = L(w)| £ Lilu—o|], woveR

(H;) f: ] x R — R is continuous, there exist nonnegative function ®(t) € C( J) and there exist
nonnegative constant L € IR such that

0 < f(t,u) —s(t)py (u(t)) < O(t), teJ,uel,

|f(t,u) — f(t,v)] =< Llu—0|, teJ,uveR

ug,u1 >0,A 2 0;

(Hf) fork=1,2,--- ,m,i=1,2, I,i € C(R,R), the exist a positive functions ‘I’;( € C(J,R) and
there exist constants Lf(, e,l > 0 such that

0w <YL +et [ull,  (Lu) eRxR,

0< IP(u) SY2(t), (tu)€ JxR,
Ii(u) — L(u)| S Liju—v], u0€eR;

(H3") f : ] x R — R is continuous, there exist nonnegative constants L € R and e such that

0 < f(t,u) —s(t)p, (u(t)), te],uck,
0 < [f(tu)] <elulP™t, teJ,ueR,
|f(t,u) — f(t,v)| = Llu—n0|, teJ,uveR
ug >u; >0,A20;
H;*) fork=1,2,---,m,i=1,2, I}; € C(R, R),the exist a positive functions ‘I’}( € C(J,R) and
there exist constants L;{, e}; > 0 such that
0 I(u) SYL(t) +el | ull, (t,u) e R xR,
0 F(u) SelulP™!,  (tu)e xR,

() = L) S Lilu—o|,  wveR;

P
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(Hz") f : ] x R — R is continuous, there exist nonnegative function I1(¢) € C(J) and there exist
nonnegative constant L € IR such that such that

—TI(t) < f(t,u) —s(t)pp (u(t)) <O, teJ,uel,
f(tu)—f(t,o)| = Llu—o|, te€]uveR
up,u1 < 0,A 0

HF*) fork=1,2,--- ,m,i=1,2, I,i € C(R,R),the exist a positive functions )(f{ € C(R,R) and
there exist constants L;'c, e,% > 0 such that

—xi®) —e ul|S w0, (Lu)€ xR,
— () Su) <0,  (tu)€ xR,
() — L(u)| S Liju—v|, wockR;

Theorem 4.3.5 (The first existence result). Suppose that (Hy) and (Hy) hold. If

pr-1
[ A ] My

Tyt W=l <1 (4-3.17)

then, the problem (4.1.1) has at least one solution.

Proof. Firstly, the Lemma 4.3.4 implies that the integral operator TL( J,R) — PC(],R) is completely
continuous. Next, suppose that (H;) and (Hz) hold, then we show the set E(L) = {u € PC(J,R) :
u = oLu for some o € [0,1]} is bounded. Let u € E(L), then we have u = oLu for each t € ],
k=0,1,2,---,m we have

50| £ M (0T (1 )+ 755 [ 40000 =99 1)

+5(T)¢p (| u(7) [)) dT + i | 17 (u(t) |> ,

j=1

< s (p(T) [0 1770 s [ 90 02(6) — ya(0)F (14 eluo)

Fs(0)y (| u(x) ) dr+ Y72 +e£|u(tk>|f%) ,

j=1
rtellull* +Ms | u P!
r(p+1)
m 2
+) e fu Wf>,
i=1

J

< M (pm L P+ (92(T) — (a))?
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we can conclude that there exists a positive constant @ such that || §Nu ||< @. Therefore

pe—1

[u(t) |[=o | Lu(t) | =0c

! +‘1/T 4(5) (9a(T) — w3(s)) " (s) u(s)|"~ " ds
oTIT o P3(3) (3 Y3 n

e | OO — ) T (BN u() 8

pr-1
<o |up|+o

T(l“r) /aT 5(5) ($3(T) = 3())" () [u(s) [P~ ds

+riVEMSX%G%WMQV1%WWMM®WB+UiV¢WWH

j=1
1 "
< o+ 141 LM ) )7+ s (D) - i
+Zﬁ+dHMW
j=1
in consequence,

HumH<W|+wuﬂﬂUﬁ—wun—%WW' L (gu(T) — pr(a)0”
I'(y+1) F(zx—l—l)

0
+Z%r]1+e} |u|7, forte J, k=12, ---, m.
]:

1
By taking into account that 0 < E]l < land ‘rl(]\fﬂ (p3(T) — ¢3(a))” < 1, we can deduce that there
exists a positive constant @* such that || u ||< @™ for any solution of the functional equation u = o Lu,
0 < ¢ < 1. Hence, by Theorem 1.5.9, as result we get the existence of a fixed point for £, which

implies the existence of at least of one solution of the problem (4.1.1) O

Before start the second existence result, we put the following, for the sake of convenience :

Cl=Ms |p(T) | 1 |’”+J§r%+ (5+1>(¢2( ) = 2(a))f

2 46M3 M5M3

= m@z(ﬂ —o(a))f; C° = m(%(n — a(a))P;
4Me m P
ci = Azl’ —|uo|+]Zr,C6—4|A|](VI+1)
=z I'(a+1)

Cl =4 LA=4 ,
e N e T G

forj=1,2,---, m
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Theorem 4.3.6 (The second existence result). Suppose that (H3) and (Hy) hold. If
c%Ct <1, (4.3-18)
then, the problem (4.1.1) has at least one solution.

Proof. We shall prove that BVP(4.1.1) has at least one solution. Suppose that (Hs) and (Hy) hold and
C?, C® satisfies (4.3.18), let Oy = {u € PC( J,R), || u ||< R4}, such that

1\p* 1 : 1
RiZ max{él(CA)), (), (ct)r 7, acs, ()0 } forj=1,2, -, m,

forVu € O), t € |, we have
1 T
5N u(0) 1 M (oD (1 )+ s [ 936 (a(s) = yal0)P

(I f(r,u(T) | +s(T)gp (| u(7) [)) dei | IF(u(t)) |>,

]

S 0 (o) 1011 4y [0 = )

(r+elu(x)|” +5(x)y (| u(x) ) dr+ )72 +e%|u<tk>r€%) ,

j=1

m m 0
< My (pm PSRy )
=1 =1

rtelull"+Ms | u ! >
T) — p
AP1 ¢ AP L1 AP 14
<c'+ Tcznl + C3TR{’ + X; g CIAP'R/,
j=

- no APl “1-2
RUTTIR+ CARY T + ) = -mRy R,

=1

(AR P71 AP
4 4

A

< (A4Ry)PH,

=1 m

A T / -1 p—1 1
| Lu(t) | uo | + | /\‘F(v)/a $3(8) ($3(T) = (s))™ " (s) [u(s)[" ~ ds +Z; | Tu(t) |
]:

e [ PO = 16 e (SN s
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MP
<o 12 LM g ) g el
1
+ m(lPl(T) —1(a))* AR,

o RaMy _ Ly

<l |+ Lo+ 1A Ty 06(T) — @)+ Ll
1

+ (w+1)(¢1( ) = 1(a))* ARy

m C.7

:C5+C6R1+Z 72 + Rl

714—7—1—2 R ]R11+Z,Rli7z1-

Thus,

I Lu(t) = Ra

which implies that £(Q)) C Q) for every u € (). Hence, from Lemma 4.3.4 the integral operator
L : ) — ) is completely continuous. According to the fixed point Theorem 1.5.8, £ has at least one
tixed point which is a solution of the problem (4.1.1). O

Remark 4.3.7. Assume that the conditions(H3) and (H}) hold. If
2, C8, Z c?, C8, Z C/<1 (4.3.19)

Then, the problem (4.1.1) also has at least one solution, which can be shown by use of the same
process of the proof of Theorem 4.3.6.

Theorem 4.3.8. Assume that f(t,u) continuous function on | x R and Ii(u) are continuous functions

on R, let lim,_,g er(tﬁf = 0 and lim,_,g — I"(|)| =0fori =12 k=1,2,---,m, wherer,e, r;;, e;; are
r el |lu %
nonegative constants and 0 < £,(2 < p—1,0 < £ < 1. Then, the problem (4.1.1) has at least one solution.
Proof. Now, in view of lim,_,o ri(;\z)\’ = 0 and lim,_, Ii(|)| =0,fori=12k=12---,m,
ri ey Y

there exists a constant Ry > 0 such that | f(t,u) |[Se(r+e|ul’), | L(u) |S¢€ (r;( +el |u ]@) for
0 <| u |< Ry, where ¢, €' > 0.

As f(t,u) continuous function on | x R and I (u) are continuous functions on R, we have that,
the conditions (Hz) and (Hy4) hold. Then the proof is analogous to that of Theorem 4.3.6. O

Remark 4.3.9. Assume that f(t, 1) continuous function on | x R and Ii () are continuous functions

onR, fori=1,2,k=1,2,---,m, let lim, o flta) 0 lim Oﬂzoandlim 0113(710—
7 7~ i YALLY: U— r+e|u‘p—1 7 U— r%_,'_ei'u‘ u— r%_,'_e}l(‘u‘p—l
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0, wher r, e, 7, el are nonegative constants. Then, the problem (4.1.1) has at least one solution. Then,
the problem (4.1.1) also has at least one solution, which can be shown by use of the same process of
the proof of Theorem 4.3.8.

In the remainder of the document, we will give the existence and uniqueness results to the
problem (4.1.1), for that we will use the Banach contraction mapping principle to prove them. For

the sake of convenience, denote Fu =¥, Z".5(t) | u(t) f;Tl

Theorem 4.3.10. Suppose that, there exists a positive constants @1, @,, O3, @4, Os and Og such that

O1 X FNu(t) |S Oy (4.3.20)
O3 = u |[S Oy (4.3.21)
@5 =| Fu |< Og; (4.3.22)

Vt € J,u € PC(J,R). If Hs and Hg hold, then the problem (4.1.1) has a unique solution.

Proof. Assume that Hs and He. we only consider the case 1 < p < 2 as the other case p = 2 is
straigtforward. If 1 < p < 2, we have p* 2 2 from that % + % = 1, applied (4.3.20)-(4.3.22) and
Lemma 4.2.1 for every t € ], u € PC(J,R), we obtain

|ppe (BN U(t)) — Py (FNo(t >>|S< ~-1)e} Z\mvu() SNo(t)|

ol /zpz (2(0) ~ 1))

(F(xu(t) = f(z,0(7) /wz ($2(7) = 92(6))'s(7) %
(#p (u(7)) — 9y (u(x e

. T
< (7 =108 M (i [ AO(0) — )P

| F(u(r) = £ 0(0) | det s [ 3R 0(0) = () s()

=(p-1)0)

| ¢p (u(7)) = ¢p (u(7)) |01T+Z|I]2 ) — I (u(t) |

j=1

her -2 (LT -Der? 3
< (-1} zMg( S (%(T)—Uiz(ﬂ))ﬁJF];L]z') lu—vl

N——
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and
«_1 «_1 1 T , 1 4 pr—1
| Ful" = | Fo ¥ \:“rm/aW?’(S)W’B(”‘%(SW 1(s) [u " ds
s [ @0~y (s [ pras]
< (" =10} |5 /ﬂ (W4(5) (9 (£) = 3(5)) 7 (5) x

[y (1(5)) = 9 (0(s))] ds|

* — p—2
(- 1@} (M“r”w LS —%(u))*) fu—ol.

A

So, for every t € ], u,v € PC(J,R), we obtain

* — p—2
| Lult) - Lo(t) | < A| (p* - 1)O] (M“?’w () —¢3<a>>7> lu=ol

L+(p—1)057
T(B+1)

m
-I-EL} | u—o]
]:

+(p* —1)05 *Ms ( (2(7) — $2(a))P + ZL]) lu—o|
=

N . p—2 m
= [| Al (pr—1)@F <M4(rp(,y 31(?3 (p3(T) - ¢3(a))’y> +) L

($2(7) = $2(a))P + ) _ L

+(p* ~1)0) "M ( r(g+1) ]
i=1

= A" ||u-ov].

L+(p—1)@L72 m
+(p ) 3 ]HM—UH,

Hence, for each u,v € PC(J,R)
[Lu—Lo| = A" [Ju—o],

otherwise,
[Lu—Lo|| = A [[u—o],

for each u,v € PC( J,R), where

. . p—2 m
= |[A| (pr—1)0OL 2 (M“(rpw +1>1@))4 (y3(T) —ws(a>)”> +) L

* *— L+ (P _ 1)®p72 3
+(p* — 1)@ 2M3< r(5+1)4 (l/fz(r)—lpz(a))”;Lfﬂ-
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If 0 < Ax, A** < 1, then, £ : PC(J,R) — PC(J,R) is a contraction mapping. By Banach
contraction mapping principle, £ has a unique fixed point in PC( J,IR) which is a solution of
problem (4.1.1) O

Theorem 4.3.11. Suppose that Hy and Hy hold. If
A*, C8, A <1, (4-3.23)

where

@) =: Map(T)ul ; @, := M (p(T)ui"l 1 maxie [ () 7y a))f 4 i‘l’?%)) ;

r(p+1) =
amP 1
O — u: © u0+2] 1 ( )+Fu¢+1 ($1(T) — ¢1(a))*@f .
3 = Uy, 4 = 1_c8 ;

Os = iy 1) Wa(T) = ¥5(a)7; @6 =: £ =2 (95(T) — ¢s(a));
pr—1

Ee A 9s(T) — gs(a)) ),

then the problem (4.1.1) has a unique solution.

Proof. Assume that Hf and H} hold. Let u € PC( J,R), then for every t € [a, 1], we obtain

0 < SATu(t) < My (p(T)gy () + g7 [ 59 (92(5) = 20 (£ (o) = s(0)g, (u()) de

< Ms (p(T)ui” - r(lﬁ) /t T¢é<s)(¢z(s> — ()P (1)dT + f‘l’?(w) :

j=1

< Ms (P(T)”f_l n ma);t&eﬁ]icf)(t)} (2(T) — ()P + i‘l’?(q)) =: 0,,
=

*

-1

o<u<t>§”0+A11/T¢é<><¢3(> $a(s) () [u(s)]" " ds

)
# L u(t) + i [ OO~ 0) oy (GNu(s)) ds
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<u +/\M(¢( T) — ip3(a)) """~V +Z‘Fl )+ [lul
=0T Ty +1) 2
1 =
+F(a+1)<¢1<> y1(a))"0} 1,
=up + C° \’”"+ZT}(tj)+ (0614—1)(1/’1( ) — 1 ()"0

j=1
as C8 < 1, then

uo + LIy () + il (91(T) — ya(a))*©5

<
||MHZ 1_c8

= ®4/

and

1 T / 7—1
Fu= |5y [ () = 93057y (5)gy () ds

Ms@} !

= oy 1y WD)~ ¥a(0)” = O,

“I(r+1

On the other hand, from the posivety of FNu(t), A, uy and Ili fori = 1,2,k =1,2,---,m for
Vt € [a,t1],u € PC( ]J,R), we have the following inequalities:
u(t) = up =: O3,
SNu(t) 2 Map(T)¢p (u1) =: Oy,

1
Fu > ?ﬁfy@p Ty 11y s = ¥a(@)" = ©s,

by use of the same process above, we get

O1 S| 3Nu(t) |1£ O,
O3 = u [[= Oy
Os5 =| Fu |£ O

forany t € Jy,u € PC(J,R), k=1, 2, ---, m, hence, by applied Theorem 4.3.10 one can deduce
that the problem (4.1.1) has a unique solution. O

Theorem 4.3.12. Suppose that Hy* and H;* hold. If

A%, C°, A < 1, (4-3.24)
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where

e+ Ms

M7 =: M3 (p(T) BT ($2(T) — ¢2(a))F +§€?(fj)> /
©, =: Map(T)ul"; @, := M@}
up + Y ‘F]l(t])

1-C

p—1 p—1
05 = %(%(T) (@) O = £t (a(T) = )

O3 =:up; Oy =:

=1 pr—1
Ze +Az M Ty s(D) - ¢3(ﬂ))(p*l)7r](\i7 (1) — (@),

then the problem (4.1.1) has a unique solution.

Proof. Assume that Hz* and H;* hold. Let u € PC(],R), then for every t € [a,t;], then from we
obtain

pr-1
0 < ug < u(t _uo+A\ /% (95(T) — 93(5))7 () lu(s) [P di

+gl}u ) *W /u P4) (1(1) = 91(5) 9y (FNu(s)) ds
=

*—1
|| My

i+ A () — @)+ L) ]

4 [ O = o) gy (NG 8, 4529

0 < (1) = Ma (T () + s [ 15 029) — ya())P 1)

+5(0)gy (o)) -+ 3 uy)

j=1

(KA

[ O~ 20 (e 4 ()

m
gt zefuj)) ,
=1
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< u [P Ms (p(TH M (pal(T) - ll)z(ﬂ))“rie?(tj))

[+ 1) =
— My ||, (4:3.26)

from(4.3.25) and (4.3.26) we have

||| ME . m

< < =4 _ (pr—1)y 1t 1

up S u(t) Sup+ A Ty 4 1) (p3(T) — ¢3(a)) +j221‘1’](t,)+e] | u
|| MP

+ I“(zxi—ijl)(lpl(T) —1(a))”

m
=ug+C” | u || + ) ¥;(t)
j=1

as C? < 1, then

Uug + Z}-ﬂ:l ‘P]l (t])

<
T

= @4

and

pP—
Fi = | s [ AEWA(T) = ()" n(s)ey (u(s)) ] < 100 >(‘/’3<> P3(a))" = @,

On the other hand, from the positiveness of FNu(t), A, ug and I,i fori=1,2,k=1,2,---,m for
Vt € [a,t1],u € PC(J,R), we have the following inequalities:
u(t) > uy =: Oz,
SNu(t) = Map(T)p (u1) =: ©1,

1
> Me®L~

Fu T+ )(1113() ¥3(a))” =: O©s,

by use of the same process above, we get

O1 S| FNu(t) |£ Oy,
O3 X[ u ||= Oy,
Os <| Fu |S O,

forany t € J,, u € PC(J,R), k=1, 2, ---, m, hence, by applied Theorem 4.3.10 one can deduce
that the problem (4.1.1) has a unique solution. O

Theorem 4.3.13. Suppose that Hy** and H;*™* hold. If

A%, C10 A <1, (4.3.27)
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where

®1 = —Msp(T)p,(111); ©n := Ms ( (T)py (111) + ot JI(()) (2(T) — P2(a))P + i;ﬁ(q)) ;

r(p+1) L
@3 =: —up; Oy =: —ito+ L4 A (1) + rl(ufjléiépl(T) —¢1(g))a@§*1;
Ms0; : Me®%~ 1
O = iy 1) (1) = ¥a(@))Ts O =t =g (Ua(T) = pale))
Mp*il (p*=1)r
Z Ay (P~ 9@,

then the problem (4.1.1) has a unique solution.

Proof. 1t is sufficient to refer to the proof of Theorem 4.3.10 O

4.4 Application
In this section, by given tow examples we illustrate the results.

Example 4.4.1. Consider the boundary value problem of impulsive differential equation
3 3 sin(t) + u(t
Ap:. (x/fqbp <C‘HD;1+ u>> (1) +In()pp (u(t)) = () + u(t) el <t< e

10 (el=*®l+ | u(t) |)
A (u (1)) =| u(t) V2 sin (u(1)),

gy (€] ) (7) =| u(7) [2 cos (u(r)),
u(el) = 1,C*HD51+u(ez) = 0.

(4.4.1)

Here T € (e!,¢?)

Pi(t) = ¢ ()ZS(t) In(t), p(t)=Vt a=p=3 A=0,
€ (el e?), p=3  p=3 wm=0,
up =1, =T, m=1,

C*HDEﬁ and C*HDEZ, are the left and right-sided Caputo-Hadamard fractional derivatives.
It is easy to show that (4.4.1) is a form of (4.1.1).
Set
sin(t) + u(t)
10 (el O+ | u(t) ])’

) 1=+ 1w ], (u) e[, xR

f(tu(t)) =

(t,u) € [e',e?] xR,



4.4. Application 123

Set
' (u(t) =] u (t) Y2 sin (u(t)), P(u(t) =| u(t) |2 cos (u(t))

Also,
|1 () [S]u () [V2 | Plut) [Slu(t) Y2 (tu) € fe!,e] xR

¢ It is not difficult to see that all the assumptions in Theorem (4.3.5) are satisfied. Thus, the
problem (4.4.1) has a solution in PC([e!,¢?],R).

e [t is obvious that all the assumptions in Theorem (4.3.6) are satisfied. Thus, the problem (4.4.1)
has a solution in PC([e!, %], R).

Example 4.4.2.

s 26DE (18 269y (GDE ) ) (6) = £t u(e) - gy () 0< <1,
A () = 5 (Isin () | +exp(—4 [u (3) ).

4
A(P% ln(x+1)}CtD8+u> (%) = f—OeXp(—% | u (%) |)’

2 4
u(0) = § -+ A|CRZL S Tu@| D (1) =
(4-4.2)
where
u? | sin(u) | £ et ul t2sin(t + 1)
fw) = Gorana 10 @1 neEsn T 10 W

) = 5 (1sin (o) [ esp(= [ (5) 1), Pl = ggexe(— 1 () D

p1=In(x+1), ¢a= Szir}(%)/ s = (x+1)2,

p(t) = 18+2¢!, s(t) = “5{EHD, y(r) = 5L,

14 [B p = %’ p* = 3, tl = =
= =, uy = fm, /\ = 10"

Here

4
57

=
<)
wie |l

It is easy to show that (4.4.1) is a form of (4.1.3). Further, there exists a function ®(t) = %M + % + %
such that |f(t, u(t)) — s(t)cpg (u(t))| < ().

One can see that the solution u(t) of the boundary value problem (4.4.1) which is given by the
integral equation (4.3.15) is well defined and satisfy:

©1 =[ FNu(t) |= Oy,

O3 = u ||= Oy
Os <| Fu |< O,
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where
1 (19 4 2¢)+/7t + 8sin(})2
Or=¢3 |~ ], O2= /
100 200+/71
0 -1 @ 7V +4003(In(2)): 5 60
STy YT 0ym(1-c8) 7 257
1 [30; 2 [30
=5\ 7 % =5 '

We can easily show that f(t,u), I'(u) and I?(u) satisfies:

2 2 2
V@m_f@wp{wia(1jﬂ—1i%)+50amwr—wmwﬂ>

e Ju|  Ju| Psin(t+1)
18 420 <v2+1 B v2+1> S e AR W’

+

< 1 l w o + — |sin(u) — sin(v)|
20 (1+u?2 1+9%2| 10
+%0 0211—0211’ s1111(()2) 3 (u) =3 (v)’
= % '1 fuz 1 fvz * % sin(u) = sin(v)|
3 0211_0211‘ Sir1182) 43 (1) =93 )]
< Lum ol o] o o+ V2@

:9t1§@L)

20 lu—v|, te]|0,1], u,v e PC([0,1],R),

[ 10) = 1'0) | = g |(Fsin () | = s () | +exp(—g 1w (5 ) D —exp(—3 1o (5) D)

< 110 lu—v|, (tu)el0,1] xR,
and
| () = Po) | = gglexp(—3 [ (5) D=ep(=3 [0 (3) DIS g lu=vl @weUxR

Also, we have



4.4. Application 125

That is to say, the conditions (H%), (H}) hold, where L! = L2 = 11—0, L= %. Through some
calculation, we get that A* ~ (0.1134991 < 1.

Obviously,(4.4.2) satisfies all the assumptions of Theorem 4.3.13. Hence (4.4.2) has a unique
solution.



General conclusion and perspectives

In this thesis, we have successfully investigated the existence of at least one positive solution, the
existence of multiple positive solutions, nonexistence and uniqueness of the solutions for various
classes of boundary value problems for nonlinear fractional differential equations with p-Laplacien
operator in chosen Banach Spaces. The existence of solutions is provided by using some fixed point
theoremes, whereas the uniqueness result is achieved by Banach’s fixed point theorem. After that,
we have presented an illustrative examples to support our main results.

In future works, many results can be established when one takes a more generalized operator.
Precisely, it will be of interest to study the current problemes in this work for other fractional and
p-Laplacien operator.
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Abstract

The fractional differential equations with p-Laplacien operator (FDEswP-L ) appear as a natural
description of observed evolution phenomena in various scientific areas such as physics, engineering,
medicine, electrochemistry, control theory, etc. The efficiency of these equations in the modeling
of many real-world problems motivated a lot of researchers to investigate their quantitative and
qualitative aspects. The aim of this thesis is to contribute and give some existence results for various
classes of boundary value problems for nonlinear fractional differential equations with p-Laplacien
operator in chosen Banach Spaces. For this purpose, the technique used is to reduce the study of our
problem to the research of a fixed point of an integral operator. The obtained results are based on
some standard fixed point theorems. We have also provided a illustrative example to each of our
considered problems to show the validity of conditions and justify the efficiency of our established
results. Here we investigate two types of such equations in Banach spaces.

Key words and phrases: p-Laplacian boundary value problems, fractional differential equations, im-
pulsive fractional differential equations, Caputo fractional derivative, Caputo-Katugampola fractional
derivative, {y— Caputo (p— C) fractional derivative, Caputo-Hadamard fractional derivative, impul-
sive boundary value problem, differential equations, Banach space, fixed-point, existence, uniqueness,
Banach, Sheafer, Schawder, Gua-Kranoselskii and Leggett-Williams fixed point theoremes, positive
solutions, Cone .

AMS Subiject Classification : 26A33, 34A08, 34B15, 33K37, 334K45.
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