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Abstract

The main aim of this thesis is to discuss some results on the global convergence of
successive approximations and uniqueness of the solution for some classes of initial value
problems involving the implicit Caputo g-difference equations, Caputo-Fabrizio, random
coupled Hilfer, ¢-Hilfer and hybrid Caputo fractional differential equations. We also wor-
ked on the existence and attractivity of the solution for a class of nonlinear v-Hilfer hybrid
and Hilfer-Hadamard fractional differential equations, the existence results are based on
the Schauder fixed point theorem. We give a result on the global convergence of successive
approximations towards the unique solution for some problems. Some examples are given
to illustrate the application of the given main results.

Key words and phrases : Fractional g-difference equation, implicit, random solution,
-Hilfer Cauchy-type problem, t-Hilfer fractional derivative, Hybrid Caputo fractional
differential equation, Caputo-Fabrizio fractional derivative, Random coupled Hilfer fractio-
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Introduction

Fractional calculus is the calculation of integrals and derivatives of any real or complex
order, and has become of great importance these last three decades. The question which
arises is on the appearance of this concept and the answer is by a simple question of
intelligence that the marquis L’Hopital asked Gottfried Wilhelm Leibniz if j’;—g, and n = %
I77.

It was September 30, 1695 the birth of the fractional calculus. The works were done
on this over the years by Leibnitz, L’'Hopital (1695), Bernoulli (1697), Euler (1730), La-
grange (1772), Laplace (1812), Fourier (1822), Abel (1823), Liouville (1832), Riemann
(1847), Griinwald (1867), Letnikov (1868), Nekrasov (1888), Hadamard (1892), Heaviside
(1892), Hardy (1915), Weyl (1917), Riesz (1922), P. Levy (1923), Davis (1924), Kober
(1940), Zygmund (1945), Kuttner (1953), J. L. Lions (1959), and Liverman (1964). The
first book was published on fractional calculus by Oldham and Spanier in 1974. There was
also the monograph by Samko, Kilbas and Marichev which was published in Russian in
1987 and in English in 1993 [92]. Other works have been done on fractional differential
equations were Miller’s and Ross (1993) [87], Podlubny (1999)[89], Kilbas et al. (2006)
[77], Diethelm (2010) [51], Oldham et al.[88], Abbas et al. [5, [ 14 [15], Benchohra et al.
[35], 36}, 37], Zhou [116}, 117] and Zhou et al. [I18| 119]. Fractional differential equations
were of great importance to physics, mathematics, engineering, biology, image processing,
electricity, control theory, economics, biophysics, and mechanics, etc, (see[27, 59, [63] 68,
85, 86l 107, 108]). For a few fundamental results in the theory of fractional differential
equations (see [, I3, 50, 69, 61], [77, [73, 74, [76, [79, /80, R, 84, [90, 02, 93] (105, [106]) also
some work on the fractional by Benbachir et al. (see[30} 34], 38, [39, 40]).

The fixed point theory is a powerful tool for mathematics, this is a very important area
of research for many mathematicians. The origins of this theory go back to the nineteenth
century from the successive approximations to demonstrate the existence and uniqueness
of the solutions of differential equations, considered by Peano and Picard.

Equations with g-fractional differences began in the 19th century [19, 43] and has had
a great interest in the last few years, some results about initial and boundary value pro-
blems of g-difference and also fractional ¢-difference equations are in [20} 21|, 54 [56].

The functional differential equations with random effects have been very interesting in
the theory of random dynamic systems [I}, 2, [I8, [64, [70]. The theory of random operators
are used in the modeling of phenomena in the physical, biological and sciences systems .

Using new kinds of Caputo-Fabrizio derivative (see [33], [83]), several results were ob-
tained for various fractional differential equations (see [29], 311 32, [52], 53]).



2 INTRODUCTION

Recently, the global convergence of successive approximations has been considered by
Abbas et al. [3, 9]. Some results about the global convergence of successive approxima-
tions for abstract semilinear differential equations are obtained in [3], and other results
concerning the successive approximations for the Darboux problem for implicit partial dif-
ferential equations are mentioned in [9]. Attractivity results for various classes of fractional
differential equations are considered in [6, [7), 8, 10, [16].

In this thesis we are concerned with the global convergence of successive approximation
to the unique solutions of various classes of fractional differential equations. We are also
interested to the attractivity of solutions of some fractional differential equations by means
of the fixed point approach.

Now we give the outline of this thesis which is as follows :
In Chapter |1} we devote the notation to preliminary results, theorems, lemmas and
other necessary results.

In Chapter [2| we discuss the global convergence of successive approximations for the
following implicit fractional g-difference equation :

(“Dgp)(t) = f(t,p(t), (“Dgp)(t)), t € I :=[0,T],

with the initial condition

p(0) = ¢ € R,
where ¢ € (0,1), a« € (0,1}, T >0, f: I x RxR — R is a given function, and D is
the Caputo fractional ¢-difference derivative of order a.. The main results of the problem
considered before are in the article [95].
In Chapter [3| we study the uniform convergence of successive approximations for the
initial value problem for hybrid Caputo fractional differential equation :

g, [ﬂfﬁzt))] — g(t.p(0), e T=0,1],

with initial condition

p(0) = ¢,
where a € (0,1),Y DS, is the Caputo fractional derivative, f € C(I x R,R*), g €
C(I x R,R). The main results of the problem considered before are in the article [100].

In Chapter we discuss the uniform convergence of successive approximations for
the coupled random Hilfer fractional differential system :

ng,[ﬁp
D32,52 0

with the initial conditions

{ EI&—%; (0,w) = ¢y (w)

1—
-[(] '720

itel:=1[0,T],weQ,

where T' > 0, o; € (0,1),5; € [0,1],(22,.A) is a measurable space, v, = «; + 3; — ;i 3;,
O - Q= R™ fi : I xR™ xR™ xQ — R™i = 1,2, are given functions, [5_% is the
left-sided mixed Riemann-Liouville integral of order 1 — ~;, and Dg #Pi s the generalized



Riemann—Liouville derivative (Hilfer) operator of order a; and type §; : i = 1,2. The main
results of the problem considered before are in the published article [96].

In Chapter [5], we study the uniform convergence of successive approximations for the
-Hilfer Cauchy-type problem :

DEFp(t) = g (£ p(t), Dip(t)); 0<a<1,0< <1, 0<a<t<bh

L7p(a) = pa,  pa€R, y=a+B—ap,
where Djf ¥ is the ¢-Hilfer fractional derivative, I;j 7% is ¢)-Riemann-Liouville fractional
integral, ¢ : (a,b] x R x R — R is given function and p, is a constant. The main results of
the problem considered before are in the published article [97].
In Chapter [6] we are interested in the existence and attractivity of solutions for the
following problem :

o(t,p(t))

{Dg‘f;w P — (L, p(t); ae. teR,,
(W) = ¥(0))'=p(t) [=0= po; po € R,

where Ry :=[0,+00), 0 <A< 1, 0< o<1, ¢=A+o(l—)), D) is the 1 -Hilfer
fractional derivative of order A and type o, p: Ry xR — R* and w: Ry x R — R, are
given functions. The main results of the problem considered before are in the published
article [10T].

In Chapter [7, we study the global convergence of successive approximations for
Caputo-Fabrizio fractional differential equation(CFFDE) :

{ (“TDip)(t) = o(t, p(t)); te€T =10\,
p(0) = po.

Here ©F D¢ is for the CFFDE, 0 < s < 1, ¢ : [0, A\] x R — R is continuous and py € R.
The main results of the problem considered before are in the article [98].

In Chapter [8] we discuss the existence and attractivity of solutions of the following
problem :

("DIY0)(t) = x(t,i(t)); T € [e,+00), ¢ >0,
("1¢)(e) =d, o=T+0(1—7),

where d € R, x : [c,+00) xR — R, # [(}I ¢ is the left-sided Hadamard fractional integral of
order 7 > 0 and # DZ’f is the Hilfer-Hadamard derivative operator of order 7 (0 < 7 < 1)
and type 6 (0 < 6 < 1). The main results of the problem considered before are in the
published article [99].

Finally we give a conclusion and some perspectives.



Chapter 1

Preliminaries

In this chapter, we introduce the necessary mathematical tools, notations and
concepts that are useful for the following chapters.

1.1 Notations and Definitions

Let I =[0,7] and T > 0. We take into account the Banach space C(I) := C(I,R)
of continuous functions from [ into R with the supremum (uniform) norm

plloe := sup |p(2)].
tel

LY(I) denotes the space of measurable functions p : I — R which are Lebesgue integrable
with the norm

lolli = [ ottt

AC(I) denotes the space of absolutely continuous functions from [ into R.

We denote by C' the Banach space of all continuous functions from I into R™ with the
supremum (uniform) norm || - ||«. As usual, AC(I,R™) denotes the space of absolutely
continuous functions from I into R™. By L!(I,R™), we denote the space of Lebesgue-
integrable functions p : I — R™ with the norm :

ol = /OT o

By C,(I) and CI(I), we denote the weighted spaces of continuous functions defined by :
Cy(I) = {p: (0, 7] > R™ : ' 7p(t) € C},

with the norm :
lelle, = sup |~ p(t).
tel

And
dp
c;(f)z{peczdtecv},

with the norm :
lellor = llpllos + 1A 1l -

4



1.2 Special Functions 5

Let ¢ : [a,e] — R be an increasing differentiable function such that ¢’(t) # 0, for all
t €laye],(—o0 <a<e< +00).
Define on [a, €], (0 < a < e < 00) the weighted space

Coplasel ={p: (a,e] = R: (¥(t) —¢(d))°p(t) € Cla,e]}, 0<¢<1,
with the norm
1ollceylael = [1(2(E) = ¥(a))* p(t) | cpa,q = max {[(4(t) — ¥(a))*p(t)] : ¢ € [a, €]},

and
nolael ={p:(a,e] = R:p(t) € C" Ma,ef; p"(t) € Coypae}, 0<y<lneN,

with the norm

n—1
HPHC:w[a’e] - kz::o Hp(k)HC[a,e] - Hp(”) Coysyase] ’

where C(a,e]) denotes the Banach space of all real continuous functions on [a, €] (see
[112)).

1.2 Special Functions

1.2.1 Gamma Function

The Euler’s Gamma function I'(z), is a basic function of the fractional calculus gene-
ralizing the factorial n! for values of n real and complex.

Definition 1.2.1 ([89]) The function Gamma is defined as follows :
+o0o
I'(2) :/ t*~le'dt,
0
which converges for Re(z) > 0.

It has the following property :
['(z+1) ==2I'(2),

so for the particular case positive integer values n, we have I'(n) = (n — 1)!.

1.2.2 Beta Function

In some cases, using the beta function is convenient.

Definition 1.2.2 ([89]) The definition of the Beta function is as follows
1
B(p, q) =/ (1 —t)? e, p,g > 0.
0
The next formula gives the relation between the Beta function and the Gamma function :

B(p, q) ZQ;Q) p,q > 0.



6 Preliminaries

1.2.3 ¢-Gamma function

Let ¢ € Ry — {1}. For d € R, we have

The g-analogue of the power (d — e)™ is
(d—e)? =1, (d—e)™ =2t (d - ed®); de € R, neN.
In a general way,

d—eq"

(d — e)(a) = daHiOZO <d—eqk+a

); d,e,a € R.

(See [T1]).
Definition 1.2.3 [71, [102] We define the q-Gamma function as follows

(1—g)Y

T8 =" ger €ER-{0-1-2 )

Definition 1.2.4 [71, [102] We define the q-derivative of order n € N of a function p :
I = R as follows (Dp)(t) = p(t),

(Dup)(t)i= (D)) = =20 1 20, (D) 0) = iy Dup)0)

and
(Dpp)(t) = (DgDy~tp)(t); tel, ne{l,2,.. }.
Set I; := {tq" : n € N} U{0}.

Definition 1.2.5 [71] We define the q-integral of a function p: I; — R as follows

(Lo)0) = [ plo)dys = 3 t01 = a)a"plta”),

n=0

provided that the series converges.

We have (D,1,p)(t) = p(t), while if p is continuous at 0, then

(14Dyp)(t) = p(t) — p(0).

1.3 Elements From Fractional Calculus Theory

In this section, we present some definitions of fractional integral and fractional diffe-
rential operators and also some properties, lemmas and the fixed point theorem useful in
this thesis.



1.3 Elements From Fractional Calculus Theory 7

1.3.1 Fractional Integrals

Now, we give some essential definitions and lemmas of fractional calculus theory in
this section.

Definition 1.3.1 [77] Let o > 0, for a function p : [0,00) — R. We define the Riemann-
Liouville fractional integral of order o of p as follows

@mwzdgéh—@aw@w,

provided that the right-hand side is pointwise defined on (0, 00).

Definition 1.3.2 [102] We define the Riemann-Liouville fractional g-integral of order
a € Ry :=[0,00) of a function p: I — R as follows (Ip)(t) = p(t), and

t (¢ — gs)@D
(I%p)(t) = / (tl_z(;)p(s)dqs; tel

0

Definition 1.3.3 [23,[77] We define the left-sided - Riemann-Liouville fractional integral
of order a(n —1 < a < n) for an integrable function p : |a,e] — R with respect to another
function 1 : [a,e] — R, which is increasing and differentiable such that ¢'(t) # 0, for all
t €la,e],(—o0 < a<e<+00), as follows :

L _ 1 ! / a—1
L0l = iy L ¢ @0 — () pls)is.

Definition 1.3.4 [77]. Let (c,e) (0 < c < e < o0) and 7 > 0. The Hadamard left-sided
fractional integral 17, p of order T is defined by

(chlp) (t) := 1“(17') /ct (log z)T_l '0<S)d8, c<t<e.

S

When 7 =0, we set

"1dp=p.

Definition 1.3.5 [/2] We define the Caputo-Fabrizio fractional integral of order 0 < s <
1 for a function p € L*(I) as follows

2(1—s) 2s

CF s () — -
P = Swe =" T idme =)

/0 p(n)dn, T >0.

2

Where M (s) is normalization constant, which depends on s. For M(s) = 5=, we get

rp(r) = (1 =s)p(r)+s [ pdn, 7> 0.
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1.3.2 Fractional Derivatives
Definition 1.3.6 [77] Let o > 0. We define the Caputo fractional derivative of order o
of a function p : (0,00) — R as follows

— n 1 t n—o— n
“Diept) = 700 = 5 [ = syt s)as,

where n = [a] + 1, [a] denotes the integer part of the real number .

Definition 1.3.7 [102] We define the Riemann-Liouville fractional q-derivative of order
a € Ry of a function p: I — R as follows (Dp)(t) = p(t), and

(Dgp)(t) = (DI =p)(t); t e 1,
where [a] is the integer part of .

Definition 1.3.8 [91] We define the Caputo fractional q-derivative of order a € R, of a
Junction p : I — R as follows (“Dip)(t) = p(t), and

CDg)(t) = (oDl p)(): te

Definition 1.3.9 [/2] We define the Caputo-Fabrizio fractional derivative of order 0 <
s < 1 for a function p € AC(I) as follows

(2 —s)M(s)

D7) = 2(1 — s)

/oT exp(—q - S(r=m))p'(m)dn; 7€ 1.

We will note that (' D#)(p) = 0 if and only if p is a constant function.
If M(s) = 52, we have

CF s
D =
p(T) =1

Definition 1.3.10 [77] The left-sided Hadamard fractional derivative of order 7(0 < 1 <
1) on (c,e) is defined by

(m2) 0 oy (1) () 22 ccr

In particular, when 7 = 0 we have

/OT exp(—7 - ST =) (n)dn; 7€ 1.

HD2+P =p.

Definition 1.3.11 [68] (Hilfer derivative). Let o € (0,1),8 € [0,1],p € LY(I), and
[élfa)(lfﬁ)p € AC(I). We define the Hilfer fractional derivative of order o and type [
of p as follows

« —Q d —Q —
(DO’Ep) (t) = < 5(1 )% (()1 a B)p> (t); for a.e.t € 1.

Definition 1.3.12 [72] (Hilfer-Hadamard fractional derivative) We define the left sided
fractional derivative of order 7 (0 < 7 < 1) and type 0 < 0 < 1 with respect to t as follows

(D) (1) = ("IXT7 D) (1),
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Definition 1.3.13 [77] We define the left-sided 1 - Riemann-Liouville fractional derivative
of order a(n — 1 < a < n) for an integrable function p : [a,e] — R with respect to a
different function 1 : [a,e] — R, which is increasing and differentiable, with ¢'(t) # 0, for
allt € [a,e], (—o0 < a < e < +00), as follows :

Dl p(t) = ( w,l(t)jt) 7% p(t)

1 1 d\" rt, S
~ ot (i) [P0 - vl

Definition 1.3.14 [112] Let n — 1 < a < n,n € N, with [a, €], —00 < a < e < 400, and
v € C™([a,e],R) a function such that ¥(t) is increasing and V' (t) # 0, for all t € [a,¢€].
The -Hilfer fractional derivative (left-sided) of function p € C"([a,e],R) of order a and
type 5 € [0, 1] is defined as

a.B: n—a); I " —P)n—a)j;
D p(t) = L [w’(t)dt] 1570 (1), > a

In other way B B(n—a)ip myyse
DIP¥p(t) = I DY p(t),t > a,

where

1 d]" 0 pm-amw
D’er p( ) lw/(t> dt] Ia+ p(t)

FEspecially, the 1-Hilfer fractional derivative of order a € [0,1] and type 5 € [0,1], can be
reformulated in the following form

DE0lt) = gy . W0 = V) D ols)ds

['(y—«
_[’Y 0”#1)’Y+ p()

where v = a+ [ — af, and

1 d

1=y9
w/( ) Ia+ p(t)

Da+ p( )

1.3.3 Necessary Lemmas, Definitions, Theorems and Properties

Definition 1.3.15 [55] Let P(L) be the family of all nonempty subsets of L and H be
a mapping from § into P(L). A mapping T : {(w,z) : w € Q,x € H(w)} — L is
called a random operator with stochastic domain H if H is measurable (i.e., for all closed
N C L{w € Q,H(w) NN # &} is measurable), and for all open G C L and all z €
LAi{weQ:xe Huw), T(w,x) € G} is measurable. T will be continuous if every T(w) is
continuous.

Let Srm be the Borel o-algebra. A mapping & : 2 — R™ is said to be measurable if for
any C' € fgm; one has,

EHC)={we:Ew)eC}C A
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Definition 1.3.16 28/ Let A X frm be the direct product of the o -algebras A and [gm
those defined in  and R™, respectively. A mapping L : Q x R™ — R™ s called jointly
measurable if for any D € Pgrm, one has :

L(D) ={(w,v) € Ax E: L(w,v) € D} C A X Bgm.

Definition 1.3.17 [28] A function L : QxR™ — R™ is called jointly measurable if L(-, u)
is measurable for all u € R™ and L(w,-) is continuous for all : w € .

Definition 1.3.18 [1] A function x : I x R™ x R™ x Q — R™ is called random Cara-
théodory in the case of the following conditions being satisfied :

(i) The map (t,w) — x(t, p, 0, w) is jointly measurable for all p, o € R™; and

(i7) The map (p,0) — x(t, p, 0, w) is continuous for a.e. t € I and w € €.

Theorem 1.3.1 (Arzela-Ascoli) [82] Let H = {z,}nen C Cld,e]. If H is equiconti-
nuous and uniformly bounded, then H is relatively compact (precompact) in C[d, e].

Lemma 1.3.1 (Corduneanu criteria) [/5] Let A C BC([0,00),R). Then A is relati-
vely compact if
(i) A is bounded
(i1) A is equicontinous on all compact subset of [0, 00)
(1i1) A is equiconvergent, that is for any € > 0, there corresponds T'(¢) > 0 such that
ly(t) — y(+00)| < € for any t > T(€) and y € A.

Lemma 1.3.2 [77] Let o, 3 > 0, and p € L'([0,1]). Then,
I§e 15 p(t) = 157 (1),

and
“Dg. g p(t) = p(t),
for all t € [0,1].

Lemma 1.3.3 [77] Let a > 0,n = [a] + 1, then
15 © D& p(t) Z ert®, o €R.

Lemma 1.3.4 [9]] Let o € Ry. one has :

[a] -1 k
(13 D50 = plt) = X i (Dhr)O).

If € (0,1), then
(I3 “Dgp)(t) = p(t) = p(0).

Lemma 1.3.5 [60] Let o >0, 3> 0 and p € L*(a,e). Then
MY IP%p(t) = 19779 p(t), ae. t € [a,e].

In particular
(i) if p € Colasel, then I I p(t) = IS5 p(t), 1 € (a .
(ii) If p € Cla,e], then I} wfﬁ d’p( t) = I p(t),t € [a,e].
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Lemma 1.3.6 [112] Let o« > 0,5 > 0. If p € C.yla, €], then

DI p(t) = p(t), t € (a,€].

If p € C'a, €] then
DI p(t) = p(t), ¢ € [a,e].

Lemma 1.3.7 [I12] Leta > 0,0 < v < 1 and p € C..pla,e]. Ifa > v, then [%¥p € Cla, €]
and
I%¥p(a) = lim I%Yp(t) = 0.
t—at

Theorem 1.3.2 [112] If p € C"[a,el,n—1 < a<n,0< <1 andy=a+—afS.
Then for all t € (a, €]

n y—k
[ peie _y ¢ — Pl o) pa-pnare

k=1 I(y—k+1) v pla).

In particular, if 0 < a < 1, we have

1959 DB (1) = p(t) — (¥ (1) ;(@iga)]“ A== g

Additionally, if p € Ci_.y[a, €] and ]i+7wp € Cl_la,e] such that 0 <~ < 1. Then for
all t € (a, €]

9 — D@ 1
I'(7) ot

Properties 1.3.1 [1] Let a € (0,1),8 € [0,1],y = a+ S — afB, and p € L'(I).
1. The operator (D(O)"ﬂp> (t) could be written as :

IV DT p(t) = p(t) — p(a).

(D57p) (t) = (Iou a)jt p> (t) = (13" Dgp) (t); for ae. tel.

2. If D} p exists and is in L*(I), then

17 (0%)

7L forae tel.
I'(7)

(18D57p) (t) = (I3 D3p) (t) = p(t) —

Let BC' := BC(R.) denotes the space of continuous and bounded functions ¢ : R, —
R.

Lemma 1.3.8 [10, [45] Let N C BC. Then N is relatively compact in BC' if the next
conditions are satisfied :
(a) N is uniformly bounded in BC';
(b) the functions belonging to N are almost equicontinuous in R, , i.e., equicontinuous
on every compact set in R, ;
(c) the functions from N are equiconvergent, i.e., provided € > 0, there exists L(g) > 0
such that

w(t) — lim w(t)| < e,

t—o0

for any t > L(¢) and w € N.
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Let @4 A C BC and let K : A — A.

(Kp)(t) = p(t). (1.1)
We present the concept of attractivity of solutions for equation (|1.1)).

Definition 1.3.19 [/9/ Solutions of equation are locally attractive if there exists
a ball B (po, i) in the space BC such that, for any solutions T = 7(t) and & = &(t) of
equations that belong to B (po, ) N A, we can write

lim (7(t) — &(t)) = 0. (1.2)

t—o00

If the limit is uniform with respect to B (po, ) N A, then the solutions of equation
are uniformly locally attractive (or, equivalently, that the solutions of are locally
asymptotically stable).

1.4 Fixed Point Theorem

Theorem 1.4.1 (Schauder Fized-Point Theorem [25, [65]). Let L be a Banach space, let
D be a nonempty bounded convex and closed subset of L, and let P : D — D be a compact
and continuous map. Then P has at least one fixed point in D.



Chapter 2

Successive Approximations for Implicit
Fractional g-Difference Equations

2.1 Introduction

This chapter discusses the global convergence of successive approximations and
the uniqueness of solutions for a class of implicit Caputo ¢-difference equations. We provide
a theorem on the global convergence of successive approximations for the unique solution
of our problem. An illustrative example is given in the last section.

More precisely, in this chapter, we focus on the global convergence of successive ap-
proximations for the following implicit fractional ¢-difference equation

(“Dp)(t) = f(t,p(t), (CDp)(1), t € I = 1[0.T], (2.1)

with the initial condition
p(0) = 6 € R, (2:2)

where ¢ € (0,1), a € (0,1], T> 0, f:I xR xR — R is a given function, and °Dj is the
Caputo fractional g-difference derivative of order a.

2.2 Successive Approximations and Uniqueness Re-
sults

In this section, we are concerned with the main result for the global convergence of
successive approximations to the unique solution of the problem ([2.1))-(2.2)).

Lemma 2.2.1 [12] Let f : I x R> = R be continuous. Then the problem (2.1)-(2.9) is

equivalent to the following integral equation
p(t) = ¢+ (I (-, p(-), (CDgp)())(). (2.3)

Define the space G := G(I,R) as the following :

G:={peC(): CD?p exists and CDgp e C(I)}.

13
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For p € G, denote
lp(®)]l = [o(t)] +“Dgo(t)]-

In the space GG we define the norm

lplle = sup [[p(£)]]1-
tel

Remark 2.2.1 (G, || - ||l¢) is a Banach space.

Definition 2.2.1 By a solution of the problem —, we mean a function p € G
that satisfies the equation on I and the initial condition .

Set I. :=[0,¢T7; for any ¢ € [0, 1]. Let us start with the following hypotheses :
(Hy) The function f: 1 x R x R — R is continuous.
(H3) There exist a constant x> 0 and a continuous function w : I x [0, u] x [0, u] — R
such that w(t,-, ) is nondecreasing for all £ € I, and the inequality

|f(t,p,0) — f(t. P, 0)| S w(t,[p—7l [0 —2l) (2.4)
holds for all ¢t € I and p, 0,p,2 € R with |p —p| < p and | — 9| < p,
(H3) v =0 is the only function in G(I,, [0, #]) which satisfies the integral inequality

~T — Qs (a—1)
v(t) S/o %w(s,v(s),oD%(s))dqs, (2.5)

with ¢ <~y < 1.
Define the successive approximations of the problem ([2.3)) as follows :

po(t) =¢; tel,

(a—1

t(t — qgs )
o) = 6+ [ I (5,9, DG (s t e

Theorem 2.2.1 Assume that the hypotheses (Hy) — (Hs) hold. Then the successive ap-
prozimations p,; n € N are well defined and converge to the unique solution of the problem

— uniformly on I.

Proof. Differentiating the two sides of the successive approximations p,; n € N by using
the Caputo g-fractional derivative, we have

(“Dgpo)(t) =0; t e,

and
(“Dgpui1)(t) = f(t, put), (“Dgpa)(t)); t € 1.
There exist pq, pe > 0 such that

onlloe < 11, [19D5 pulloe < po.



2.2 Successive Approximations and Uniqueness Results

For each tq,ty € I with t; < t9, and for all ¢t € I, we have

t2 (tg — qs (a=1)
/0 <trqq<oz)|f<57pn1(5)?CD?p”1(8))‘dq8

’pn<t2) - pn(tl)‘ <

t1 t —qs (a 1) o
- %ﬂs pur(3).€ Do ($))dys
q(a)
f | N — (= gs) Y] o
<[ o) £ (5, pu1(8).€ Df pu-a(9))1dys
2 |(ty — g5) Y] ¢ pa
+ [0 (9 Dy ()l
Then
a|(ty —gs) Y = (L —gs) V)]
pults) =t < sw |f(tpo)l [ ; s
(£.0:0)E1X[0,p1] X [0.p12] q(@)
to |(t2 — qs)(a71)|
s s fpo)l [ dys
(t.p,0)€1X[0,p1] X [0, 2] t1 L, (04) !
— 0, as t1 — to.

We get

(“Dgpu)(ta) = (CDg pu) (1))

< | f(t2, pr1(t2),” D pn-1(ta)) — f(t1, pu-1(t1),” Dy pu-1(t1))]

— O, as t1 — to.
Thus

Hp’rL(tQ) - pn(tl)Hl — O, as tl — tQ.

Then, the sequence {p,(t); n € N} is equi-continuous on /.

Let
A :=sup{s € [0,1] : {pn(t)} converges uniformly on I }.

If A = 1, we obtain the global convergence of successive approximations. Suppose that \ <

1, then the sequence {p,(t)} converges uniformly on I,. As this sequence is equicontinuous,

and converges uniformly to a continuous function p(t). In the case that we prove that there

exists v € (A, 1] such that {p,(t)} converges uniformly on I, this will in a contradiction.

Put p(t) = p(t); for t € I. From (H,), there exist a constant p > 0 and a continuous

function w : I x [0, u] x [0, u] — R, ensuring inequality (2.4). Also, there exist v € [\, 1]
and ng € N, such that for all ¢ € I, and n, m > ny, we have

|on(t) = pm ()] < 1,

and
(D2 p)(t) = (CDZpm)(1)] <

For any t € 1, put
V() = [pa(t) = pm(t)],

welt) = sup o (),

n,m>k
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“Dg™ ™ (t) = |“Dg pa(t) = Dy pu(t),

and
(“Dgue)(t) = sup (CDgo"™)(t).

n,m>k

Then the sequence vy(t) is non-increasing, converging to a function v(t) for each t € I,.

From the equi-continuity of {v.(¢)} it follows that klim vi(t) = v(t) uniformly on I,.
—00

Additionally, for t € I, and n,m > k, we get

(L) = |pa(t) — pm(t)]
<Sséuopt Pn(8) = pm(s)]

t — qs (a Y C Nna C na
< [T s a(3).€ Dpncs(5) = 105 s (5).C D pnr(3)) s

VT (t — gs)@b
< / @r(j«l)|f<s, Pr1(5).€ D pr1(8)) = F(5, pm-1(5)." D pr1(s))|dys-

Thus, by (2.4)) we have

n,m Tt — qs (a—1) ey a
o) < [T I s (8) = pirct (911D pucr(8) —C D pncs(8))dys
0 q(@)

T (t_qs)(a_l) n—1,m— a, (n—1,m—
:/0 Ww(s,v( Lm=1)(g) ¢ qu( Lm=1(5))d,s.

Hence
a—1)

T (t — gs)(@—
'Uk(t)g/o @FZ(()X)

By the Lebesgue dominated convergence theorem we have

w(s,vp_1(s)," Dgvy—1(8))dys.

T (¢t — gg)@=D
v(t) §/0 @Fj(;)w(s,v(s),cDav(s))dqs.

Moreover, by (H;) and (Hs) we have v = 0 on I,, which yields that klim ve(t) = 0
—00

uniformly on I,. Thus {px(t)}32; is a Cauchy sequence on I,. In consequence, {px(t)}72;
is uniformly convergent on I, that gives us the contradiction.

Thus {px(t)}72, converges uniformly on I to a continuous function p,(t). By the Le-
besgue dominated convergence theorem, we have

t (¢t — gs)@1
lim —< 4s)

fon )y 5 ee) T Dipi(s))dgs

(a—1)

t (t B q5> C Na
= /0 Wf(sa p«(8), Dq p«(8))dys,
for each ¢ € I. This means that p, is a solution of the problem (2.1))-(2.2).

Lastly, we prove the uniqueness of solutions of the problem (2.1)-(2.2)). Let p; and py
be two solutions of (2.3). As previously, put

A= sup{c € [0,1] : py(t) = pa(t) for t € I},
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and assuming that A < 1. There exist a constant ¢ > 0 and a comparison function
Wt 50 x ook, Satistying inequality (2.4). We take v € (¢, 1) such that

|p1(t) = p2(t)] < pand [|(“Dgp1)(t) = (“Dgp2)(t)] < 3

for t € I,. Then for all t € I, we get

~T _ S(a—l)

n(t) = (0] < [ I 5 () D) = Fsun (5. D ()
~T _ S(a—l)

< [ B s o) = (9L Dnls) = D9

Again, by (H,) and (Hs) we get py —pa = 0 on I,. This results p; = p, on I, which makes
a contradiction. Consequently, A = 1 and the solution of the problem (2.1))-(2.2) is unique
on [.

2.3 An Example

Consider the following implicit fractional i—difference equation

(‘Dip)(t) = e te [0,1],
i L+ +DF () (2.6)

W= Nl

For each p, 0, p, 2 € R, p € N* and ¢ € [0, 1], we have

|f(t,p,0) — [(t,p,0)] < te'(lp—p| + |0 — 7).

This implies that condition (2.4) holds with any ¢ € [0,1], © > 0 and the comparison
function w : [0,1] x [0, u] x [0, u] — [0, 00) given by

w(t, p,0) = te'(p + o).

Consequently, Theorem [2.2.1] means that the successive approximations p,; n € N,
defined by

S)(afl)

Pr1(t) = 2"‘/;%

converges uniformly on [0, 1] to the unique solution of the problem ({2.6]).

(5, pu(5), (CDgpa)(s))dys; t € [0,1],



Chapter 3

Uniform Convergence of Successive
Approximations for Hybrid Caputo
Fractional Differential Equations

3.1 Introduction

This chapter investigates the global convergence of successive approximations and
the uniqueness of solutions for a class of hybrid Caputo fractional differential equations.
We provide proof for the theorem on the global convergence of successive approximations
to the unique solution of our problem. In the final section, an illustrative example is given.

We are mainly concerned, by study the uniformly convergence of successive approxi-
mations for the initial value problem for hybrid Caputo fractional differential equation :

D || ettt e T G.)
with the initial condition
p(0) = ¢, (3.2)

where a € (0,1),Y DS, is the Caputo fractional derivative, f € C(I x R,R*), g €
O(I x R, R).

3.2 Successive Approximations and Uniqueness Re-
sults

In this section, we investigate the result of the global convergence of successive
approximation towards a unique solution of our problem.

Lemma 3.2.1 [66] Let f : I xR — R*, g : I x R — R be continuous functions. The
problem (3.1) — (3.2)) is equivalent to the integral equation

o(0) = 5o | 075+ g € st (33)

18
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Definition 3.2.1 By a solution of the problem (3.1) — (3.2), we mean a function p € C(I)
that satisfies the equation (3.1) on I and initial condition (3.2]).

Set I,, :=[0,nT; for any n € [0, 1]. Let us present the following hypotheses :

(Hy) The functions f: I x R — R* and ¢ : I x R — R are continuous,
(Hy) There exist a constant ¢ > 0 and a continuous function w : I x [0, u] — R, such
that w(t,-) is nondecreasing for all ¢ € I, and the inequality

l9(t,p) — g(t,p)] < wl(t,|p—7l), (3.4)

holds for all ¢ € I and p,p € R such that |p — p| < p,
(H3) V =0 is the only function in C (I, [0, ]) which satisfies the integral inequality

¢ & — (t — ﬁt)a>
Vit) <2 ¢ % . te — (t — pt)*
( ) B (t,p)ssz[o,é] |f( ,p)| <’f(07 Qb)‘ " (t,p)g};%[oj] |g( ,p)] F(oz + 1)
it
! <t,p>§}1§i[o,5] 17(5.0) /o ['(a) w(s, V(s))ds, (3.5)

withn < g < 1.

Define the successive approximations of the problem (3.3)) as follows :

psa() = F(ts pu(®)) {

Theorem 3.2.1 Assume (Hy)— (Hs) hold. Then the successive approzimations p,;n € N
are well defined and converge to the unique solution of the problem (3.1)) — (3.2) uniformly

on I

Proof. There exist 6 > 0 such that

lpnlle < 0.

Now, for each t1,t5 € I with t; < t5, and for all t € I,
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on(t) = 0] = |1 ()] 5075+ g 2= 9 s (s
sl { G5+ g [ 0= o)
< |t pomst) { s+ s (6= ol s ()5
= Sttn a0 s+ g = 9 s 5
8l {5 s [t 9 s s (6
= Sttn s o) s+ g 0= 9 s s (6

<

f(tQa pn—l(tQ)) - f(tb pn—l(tl))

f((;b o) + F(la) /0152 (ta — s)*'g(s, pn-1(s))ds

1t a0 [ 52— ) gl s (3))ds

I'(a) Jo
s [ 7009
- p(la) /0t1<t1 = 5)* g (s, pu-r(s))ds|.
Thus
n(t2) = pu(t)] < |F(t2, pus(t2)) — F(trs s (tr)) ’f( (;b >

+ 1“(104) /Otz(tZ —8)*g(s, pn_1(s))ds

+ sup [f(¢p
(t,p)EIX[0,6]|( )’F(Oé)

to

+ \ (ty — 8)* g(s, pn_1(s))ds

/otl <(t2 —)" T = (b - 3)“_1>g(s>pn1(s))ds

< [tz pnaa(ta)) = f(t1; poa(t))

(‘ f(gj o) ’ * F(la) /Ot2 (ta — s)a_1|g<S,pn—1(3))|d8>

(tg — S)a_l - (tl — S)a_l

1 t1
+  sup t, (/
(mmwlf( p)|r(a) ;
to

[ = 5 g, ,on_1<s>>|ds)

t1

l9(s, pn-1(s))|ds

<

f(ta, pn-a(te)) — f(t1, pu-1(tr))

+ sup  |f(t,p)l
(t,0)ET%[0,6]

¢ t2 (ty — s)*t )
(‘ f(0,9) | * (t,p)SE%E[O,(ﬂ 9t Pl /0 INGY! ds

t1 to (tg _ S)a—l )
X su t, / ds + ds |.
(t,p)EIE[O,(ﬂ 9 p)\( 0 ['(a) t ['(«)
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From the continuity of the fonction f, we obtain

|pn(t2) - pn(t1)| <

Fltn o (t)) f(tl,pn—1(t1))|

(| ¢ |+ w ottt )

F(0,0)|  (t.p)erx(o) a+1)

+ sup  [f(t )]

(t.p)€1X[0,3]

B U

X su t, / ds

(t,p)elg[o,é} l9(t: ) ( 0 ['(a)
L (b2 t)?

['a+1)

— 0, as t; — ts.

Hence
|pn(t2) — pn(t1>| — 0, as t1 — to.

The sequence {p,(t); n € N} is equi-continuous on I.

Let
¢ :=sup{n € [0,1] : {p,(t)} converges uniformly on I,}.

If ¢ = 1, we obtain the global convergence of successive approximations. Assuming that
¢ < 1, then this sequence being equicontinuous, so it converges uniformly to a continuous
function p(t). Proving that there exists 8 € (¢, 1] such that {p,(t)} converges uniformly
on Ig, will eventually leads to a contradiction.

Put p(t) = p(t); for t € I.. From (Hs), there exist a constant p > 0 and a continuous
function w : I x [0, u] — Ry satisfying inequality (3.4). Also, there exist 8 € [, 1] and
no € N such that for all t € Iz and n, m > ng, we have

pn(t) = ()] < -

For any t € Ig, put
V() = [pu(t) = pm(t)],

Vi(t) = sup V(1)

n,m>k
Since the sequence Vi (t) is non-increasing, converging to a function V' (¢) for each t € I5.
From the equi-continuity of {Vj(¢)} it follows that klim Vi(t) = V(t) uniformly on Is.
—00
Furthermore, for ¢t € Ig and n,m > k, we get

VO () = |pu(t) — pm(t)]
< sup |pu(s) — pm(s)]

s€[0,¢]
it O s+ g =9 ol (s

St O i+ g € 90 (s |

<
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f(0,0)  T(a)

f(0,¢)  T(a
+ 1f(t, pm—1(1))]
X 1“(1a) /ot(t —8)*g(s, pp_1(s)ds — 1“(1a) /ot(t —5)*1g(s, pm-1(s)ds|.

Thus
yimm) (t) = |pn(t) - pm(t)’

< 1) = 0 s (|1 + g [ € 0 ot s

0

s O] [ oo s 6) = o)
o
< |t por() - f<t,pm_1<t>| (|f(07 ¢)‘ o )
t(t— 5)0“1

ds.

+ s |f(to)l [ Fay 905 i (5) = 95 pma ()

(t,p)€15x0,0]

This gives
V(1) = |pa(t) = pm(t)]

<3 11001 (| 7as| + ot [ as)
< sup N sup  [g(t, p S
(t,p)EIBX[O,(s] f(07 qb) (t,p)EIBX[O,5] 0 F(Oé)
Bt (t—S)a_l
+ s |f(to)l | 905, pu1(5) = 9(s5, pr-a(s) | ds.
(t,p)€I5x[0,6] 0 (a)

Next, by (3.4) we get

¢ tr—(t =B
Vi) <2 sup  [f(tp (’ +  sup gt p)|l s
0 (tp)€]5X[06| (t,0)1 f(0,9) (t,p)elﬁx[0,6]| (t,0)l o +1)
a 1
+ sup  |f(tp I/ Sy |pn—1— pm-1])ds
tpEI/gX[O(;

—(t— Bt)a>
su t o) Y
tp efﬁpx[o 5] l9(t. ) [C(a+1)

(n— l’m_l)(s))d&

cb
(

<2 sw |f<t,p>|(

(t,p)€1x[0,0]

Bt (
v s gl [0

(t,p EIBX[O(S
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Hence
6 1 = (t = Br)°
Vi) <2 sup ft,p< + sup |g(t p)| ——
) (t,mefax[o,a}' o)l f(0,9) (t,p)GfﬁX[075}| (:0) I(a+1)
Bt (t _ S)afl
+swp f(tp)l [ (s Vi (s)ds.
(t,0)€L5 %[0, o Ifa)
By the Lebesgue dominated convergence theorem we have
6 1 — (t — )"
V(i) <2 sup f(t,p ( +  sup gt p)|———7—"—
) <t,p>efﬁx[o,6}| (:0)] £(0,¢) (t,mefax[o,a]' &0) [ +1)

+ sup |f(t,p)|/05t“;(303;_w(s,V(s))ds.

(t,p)€15X[0,]

Moreover, by (H;) and (Hj;) we have V' = 0 on I, which yields that klim Vi(t) =0
—00

uniformly on Iz. Thus {px(t)}72, is a Cauchy sequence on Ig. Consequently {px(t)}52, is

uniformly convergent on I that gives us the contradiction.

Thus {px(t)}32, converges uniformly on I to a continuous function p,.(t). By the Le-
besgue dominated convergence theorem, we have

dm St (1)) {faf 57 r(lo» fre=rgts pk(s)ds}
= f(t, p*(t)) {f((fj ¢) + F(la) /(:(t — S)‘J‘_lg(s7 p*<8)d8} ,

for each ¢ € I. This means that p, is a solution of the problem (3.1))-(3.2).

Finally, we focus on the uniqueness of solutions of the problem (3.1)-(3.2). Let p; and
p2 be two solutions of (3.3). Put
S:=sup{n € [0,1] : p1(t) = pa(t) for t e I,},
and assuming that ¢ < 1. There exist a constant g > 0 and a comparison function
w : Iexjou—r, satisfying inequality (3.3]). We take 3 € (n,1) such that
p1(t) = pa(t)| < 115
for t € Ig. Then for all ¢ € I3, we obtain

0
f(0,9)
Bt (t _ s)afl >
t R A
+(tﬁp)2};px o l9(t, p)| /0 o) %

a—1

Bt (t — s)
+ sup  |f(tp / A
(t,p)efax[o,a}u ) o I'(a)
, ‘

f(0,9)

e — (t — ﬁt)a>
+ sup t,p)|—————
(t,p)€15%[0,0] 5t ) I'(a+1)

- ) [ s~ i
su , ——w(s, — S.
(t,mefﬁpx[ové} P T T(@) o=

0= ppH] <2 sup |f<t,p>|<

(t,p)elﬁ X [075]

Q(Sapo(s) - g(S,pl(S) ds

<2 s |f<t,p>|(|

(tvp)EI,B x[0,4]
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Again, by (H;) and (Hs) we have p; — p2 = 0 on Iz. This gives p; = py on I, which yields
a contradiction. So, ¢ = 1 and the solution of the problem (3.1))-(3.2)) is unique on I.
3.3 An Example

Consider the following hybrid Caputo fractional differential equation

1
c2
0+

p(t) __tet .
V1+|p<t>|] = e ¢ €101

p(0) = 3.

For each p, p € R and ¢ € [0, 1] we have

lg(t, p) — g(t,p)| < te'(|p —pl).

This implies that condition (3.4) holds with any ¢ € [0,1], © > 0 and the comparison
function w : [0, 1] x [0, x| — [0, 00) given by

w(t, p) = te'|pl.

Consequently, Theorem [3.2.1] shows that the successive approximations p,; n € N,
defined by
polt) = 3¢ £ € (0,1,

pra®) = S gy + g = 9 et e 0.1

f(0,3)

converges uniformly on [0, 1] to the unique solution of the problem (i3.6]).



Chapter I

Successive Approximations for Random
Coupled Hilfer Fractional Differential Systems

4.1 Introduction

In this chapter, we study the global convergence of the successive approximations
as well as the uniqueness of the random solution of a coupled random Hilfer fractional
differential system. Our main result is a theorem on the global convergence of successive
approximations to the unique solution of our problem. In the last section of this chapter,
we present an illustrative example. Recently, a great attention has been given to the
existence of solutions of fractional differential equations with Hilfer fractional derivative
[60, 62, [68], 109, [110].

We are interested by the uniform convergence of successive approximations for the
coupled random Hilfer fractional differential system

Dgl,ﬂlp (t,w) = fi(t, p(t,w), o(t, w),w)
.DSQ“BQQ (t’ w) = f2 (t, p(t, w)7 Q(ta 'l,U), 'l,U)
with the initial conditions,

{ EI&‘W; (0,w) = ¢1(w)

17
IO ’YzQ

itel:=1[0,T],w e Q, (4.1)

;w € €, (4.2)

where T > 0, «; € (0,1), 5; € [0,1], (£, .A) is a measurable space and A is the o-algebras,
vi = o; + B —aifi, ¢ 2 = R™ f, o I X R™" X R™ x Q — R"™ i = 1,2, are given
functions, [3_% is the left-sided mixed Riemann-Liouville integral of order 1 — ~;, and
D3P is the generalized Riemann-Liouville derivative (Hilfer) operator of order «; and

type ;11 =1,2.

4.2 Successive Approximations and Uniqueness Re-
sults

In this section, we discuss the main result of the global convergence of approximations
of the problem (4.1) — (4.2)). We define, by C := C.,, x C,,, we denote the product weighted
space with the norm :

1o, )lle = llplle,, +lelle,,

25
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Lemma 4.2.1 [1] Let x € C,(I). Then, the Cauchy problem

has

{ (D5 §<t> = x(t); tel

(170) (0], =

the unique solution
¥

I'(v)

plt) = —P 0 4 (1) (1), (4.3)

Definition 4.2.1 By a solution of the problem (4.1) — (4.2) we mean coupled functions
(p,0) € C,, x C,, that satisfy the system (4.1) on I and the system (4.2).

Set

I, :=[0,nTY; for any n € [0, 1]. Assume the following hypothesis :

(Hy) The functions f; : I x R™ x R™ x Q — R™;i = 1,2, are random Carathéodory,

(Hy) There exist a constant x> 0 and continuous functions g; : 1 x [0, p]™ x [0, u]™ X
Q — Ry; i = 1,2, such that g;(¢,-, -, w) is nondecreasing for any w €  and each
tel, and

fi(t>P> 0, w) - fz(tapa @aw) < gl(ta ||p _pHC'yl? ||Q - ?HC’YQ’w); 1=1,2. (44)

For any w € Q2 and each t € I, p,p € C,,, and g, 0 € C,,, such that ||p—7pllc,, < u,

and |lo —0ollc,, < u,
(Hs) (V,IWV) = (0,0) is the only coupled functions in 2 x C,, (I, [0, u]) x C., (I, [0, u])

which satisfies the integral inequalities,

Vitw) < - (;) /0 (s, V (5, w), W (s, w), w)(t — 5)~ds, (4.5)
and . or
W (t,w) < e /O g2(5, V (5, w), W (s, w), w)(t — s)21ds, (4.6)

withn <¢ < 1.

Remark 4.2.1 From , foranyw € Q and eacht € I, pe C,,, 0€ C,,, andi = 1,2,

we get
11t s 0, w)l| < [1/i(2, 0,0, w)|| + 6:(Z, llplle,, » lelle,, , w)
< fi(w) + g; (w),
where ff(w) :=sup | fi(t,0,0,w)||, and g} (w) := sup gi(t,x,y,w); i =1,2.
tel (t2,y)€1X[0,u] X [0,4]

Define the operators L; : Cx Q — C,,, and Ly : Cx @ — C,, by :

and

(La(p. 0)) (t.w) = mt + [ gy 2 p(s’ﬁv()gf)(s’ ww)
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Consider the operator L : Cx € — C,

(L(p; 0))(t,w) = ((La(p; 0)) (1, w), (L2(p; 0)) (£, w)) -

For any w € Q, we define the successive approximations of the problem (4.3)) as follows :

(po(t, ), eo(t, w)) = (qbl(w),asz(w)); tel
(pn+1<t7 w), Qn—i—l(ta w)) = ( (Ll(pna Qn)) (ta w)a (LQ(pna Qn)) (tv w)>§ tel

Theorem 4.2.1 Assume (Hy)—(Hs) hold. Then the successive approzimations ((pn)nen, (0n)nen)
are defined and converge uniformly on I to the unique random solution of problem —

.

Proof. There exist 0,0, > 0 such that ||p[lc,, < 01, [lollc,, < 0. Next, for any w € €,
and each tq,ty € I with t; < t9, we have

[t5™" pu(t2, w) — 17" p(ty, w) |
_ téf'yl <¢1(w)t;11 + /t2(t2 . 8)a1—1 fl(svpn—1(87w)7Qn—l(svw)vw)d8>

T (1) T ()

t1—71<¢1 - 1+/“ (t — al_lﬁ(s,pn—l(s,;v()éf;a(s,w),w)d8>H
g /ob(t? gy 1 108, i (s, ;U()ale; 1(s, w), w)d
[ttt
I /Ot1<t2_s)al 1 f1(85 Pn— 1(8;1)()0451;1 18, w), w
bk /tf (s — s)al_lfl(& pn—l(s,;v(tf);—l(s, w),w)
e /otl(tl B S)al_lfl(s,pn—l(s,&)j;—l(saw)>w)dsH
< im /0“( b — S)M_lfl(s’ pn—l(s,lfv();f;—l(s, w)w)
N : (ts — S)al_lfl(s, pnl(s,lfv()j;l(s, w),w)
_ /0 "t — S)al_lfl(s, pnl(s,rw()(;f)nl(sa w), w) dSH

Ti-m

/ (“2 — )" = (- s)“”)ﬁ(s,pnl(s, w), @1 (s, w), w)ds

<
()
to

+ (t2 - 5>a171f1(57pn71<87w)7anl(saw)aw)ds .

t1
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Then, from Remark [£.2.1], we get

T1-m
1t pu(ta, w) — 877" pu(tr, w)|| < m(ff(w) + g1 (w))

t1 to

([ Nt 57 = o= s s [ -y as)
0 t1

— 0, as t1 — to.

Thus,
Hté_’hpn(t%w) - ti_’hpn(tla w)” — O, as tl — t2.

Also, we obtain that
1£5772 00 (ta, w) — t; 0 (t1, w)|| — 0, as t; — ts.
Hence
[t pu(ta, w) — 817" pu(tr, w) || + 67 0n (b2, w) — 11 2 0n(tr, w)|| — 0, as t, — .

So; the sequence {(pn, 0,);n € N} is equi-continuous on I, for any w € €.

Let
B :=sup{n € [0,1] : {(pn, 0n)} converges uniformly on I,, for any w € Q}.

If B = 1, one has the global convergence of successive approximations. Supposing that
f < 1, then the sequence {(p,, 0,)} converges uniformly on Iz. As this sequence is equi-
continuous, and converges uniformly to a continuous function (p(t), o(t)). If we prove that
there exists ¢ € (B, 1] such that {(p,, 0n)} converges uniformly on I, for any w € €.
Which is a contradiction.

Put p(t,w) = p(t,w) and o(t, w) = o(t,w); for each t € Iz and any w € €.
From (Hj3) , there exists a constant x> 0 and a functiong; : I x [0, u]™ x [0, u]™ x 2 — R,
ensuring inequality . Also, there exist ¢ € [3,1] and ng € N, such that, for all ¢ € I
and any w € €0, and n, m > ng, we have

lon (- w) = pm (- w)lley, <

[on (-, w) — om (-, w)llc,, < p-
For each t € I, and any w € €2, we put
V(n’m)(Ww) = ||pn('7w) - pm('?“’)HC’wl?

Vi(t,w) = sup V("””)(t,w),

n,m>k

WM 0) = lon(®) = om0l
Wi(t,w) = sup W™ (¢ w).

nm>k

Since the sequence (Vi (¢, w), Wi (t,w)) is non-increasing, it is convergent to (V' (¢, w), W (¢, w))
for each t € I, and for any w € €. From the equicontinuity of {(Vi(t,w), Wi (t,w))}, it
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follows that klim Vi(t,w) = V(t,w) and klim Wi(t,w) = W(t,w) uniformly on I.. Addi-
—00 —00
tionally, for each t € I, and any w € ), and for n,m > k, we get
V(mm)('? w) = Hpn(7 w) - pm<7 'LU)HC’W1 = Htli’yl (pn<t7 U)) - pm<t7 U))) ||
< sup [ (pu(s, w) = pm(s,w) ) |

s€[0,t]

< t1%[<¢1<(;”)twl + / t(t—s)””ﬁ(s’pn_l(sf ()éf;_l(sjw)jw)“)

N
< Ifl<O:) /0 (= )t

- fl(S, pm—1(87 w)7 Qm—l(sa w)? w)

< 1 /gT(t — s)"‘l_lsl_“Yl
~I'(aq) Jo

- fl(sa pm—1(57 w)v Qm—l(sv QU), w)

= r(im /;T

x (t —s)*ds.

f1(57 ,On_1(8, w), Qn—1(5> w)? w)

ds

fl(sa pn—1<87 ’LU), Qn—l(sv w)? w)

ds

f1(37 pn—l(sa w)a Qn—1($> ’LU), ’UJ) - fl(sa pm—l(s7 ’U)), Qm—l(sa ’LU), ’LU)

Oy

Thus, from (4.4) we get

1 T
V(n,m) (ta w) < / 91(37 Hpnfl(&w) - pmfl<3>w)HCﬂ: Hgnfl(sv w) - mel(svw)chw)
I' (1) Jo
(t — )™ 'ds

1 T —1.m— n—1lm-— a1 —
= F(oq)/o gi(s, VOmtm= (s qp), WO=Em=D (5 ) w).(t — 5)*1 " ds.

Hence

T
Vie(t,w) < /g 91(8, Vi1 (s, w), Wi_1(s,w), w)(t — s)‘“_lds.

1
I'(a1) Jo

By the Lebesgue dominated convergence theorem we have

V(t,w) <

- /OcT g1(s5, V(s,w), W(s,w),w)(t — s)* ds.

Also, we find that

W(t,w) <

N /gT g2(5, V(s,w), W(s,w),w)(t — s)** ds.

(
Then, from (H;) and (Hj) we get V = 0 and W = 0 on I x €2, which yields that
klim (Ve(t,w), Wi(t,w)) = (0,0) uniformly on I. x Q. Thus {(px(t,w), ox(t,w))}?2; is a
—00

Cauchy sequence on I x . Consequently {(px(t, w), ox(t,w))}?2, is uniformly convergent
on I that gives us the contradiction.
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Thus {(px(t, w), ox(t, w))}22, converges uniformly on I for any w € € to a continuous
function (p.(t, w), 0«(t,w)). By the Lebesgue dominated convergence theorem, we have

S

¢1(w) y—1 ) L (s, pr(s,w), on (s, w), w)
i Fet T () !

o (bl(w)tfyl—l + /t(t o S)al—l f(S,p*<S,w), Q*(‘S?w)?w)dS’

- T(m) T (1)
and
. ¢2(w) vo—1 t s a2_1f(8,pk(S,QU),Qk(S,UJ),UJ) s
AT AGE T (an) d

o ¢2(W) ya—1 ¢ — 3 a2_1f(s,p*(s,w),g*(s,w),w) s
B F(%)t +/ ( ) I' (ag) o

for each ¢t € I. This means that (p., 0.) is a solution of the problem (4.1))-(4.2]).

In the last step, we discuss the uniqueness of solutions of the problem (4.1))-(4.2). Let
(p1,01) and (pa, 02) be two solutions. As previously, we put

B :=sup{n € [0,1] : p1(t,w) = pa(t,w), 01(t,w) = oo(t,w) for t € I,, and w € Q},

and assuming that S < 1. There exist a constant g > 0 and a comparison function
it Ig0 gmxo g <ok, ¢ = 1,2, satisfying inequality (4.4). We take ¢ € (n, 1) such that

o1 (s w) = pa(, w)lle,, < pand floi(- w) — o2 w)lle,, < p;

lon () = pal-, w)lle,

< T o [0 s ) (o0 w) = o), ) )| (0 )
1 T ) o1—1
<t o ol losw) = miswle, leols.w) = or(s.w) e, w)(t = 5) s,
and

||Q1('7 ’LU) - QQ('v w)HCn,2

= r(;) /0<T

1
I' (az)

(t —s)*lds
Cyy

f2<57p0(57w)7 QO(S,U}),U}) - f2<87p1(57w)7 91(57w)7w)

<

T
/0 92(37 ||p0(s,w) - p1(8, w)||c~,17 HQO(S7w> - Ql(sv w)Hngaw)(t - S)a2_1d8'

Again, by (H;) and (Hj3) we get p; —p2 = 0 and g1 — 02 = 0 on I x . This results p; = po
and 0, = 0o on I x 2, which makes a contradiction. Consequently, 3 = 1 and the solution

of the problem (4.1))-(4.2) is unique.

4.3 An Example

We equip the space R* := (—o0,0) with the usual o-algebra consisting of Lebesgue
measurable subsets of R* . Consider the following random coupled Hilfer fractional diffe-
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rential system :

(D(f fp)(t,UJ) — f1(t,P(t>w)> Q(taw)aw)
D22 0)(4) = fo(t. p(t ¢
(Dio)t) = Lt pltw) ot w) @)y oy werr, (@)
(53 £)(0,0) = 25in w
1
(15 0)(0,w) = 2 cos w,
where
w?sint
fit,p, e, tel0,1], weRZ,
trew) = grmar ey € Y
w? cost
fta O, W) = ’tGO’l’wGR*_’
2t 0,) T A 0.1)
with o; = Bl— ;i=1,2, and ; = {27‘:172'

For each p, 0, p, 2 € R, p € N* and ¢ € [0, 1], we have,

f1(57p7 Q,U)) - f1(5,ﬁ,@, w)

()

NI

B Ht‘l‘< w?sint w?sint >H
2+w?)(1+pl+]o) (2+w?)(1+p|+[a])

tiw smt( 1 1 )H
(2+w?) \1+|p|+[o] 1+1p]+ ol

1 _
wt! ‘ (12 = 1o]) + (12l = le) H
S @t o)) | T+ A+ D+ B+ 2D
< (lo=ple, +lo—7l
< 5w o =Plley +llp=plle, |-

Also, we obtain
2

w
S 2
c 24w

3
1

f2(s7p? Q,U)) - f2(87p7@7 'lU)

<Hp lley +lIp —PHcl>-
4 4

This implies that condition (4.4) holds for ¢ € [0, 1], x> 0 and the comparison functions
9::(0,1] x [0, u] = [0,00); i = 1,2 given by

w2

2 + w?

gi(t, p, 0,w) = (p+0); i=1,2.

Consequently, Theorem implies that the successive approximations (p,, 0,); n €
N, defined by

(po(t), 00(t)) = <2 sinw, 2 cos w);t el

(s (t), onsa (1)) = (<L1<pn, 0)) (), (La(pms 00) (¢ w)) tel,
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where

(s, w), w)

2l t
smuw 3 1+/O<t_8);1f1(sap(8,w)a ds,

_ 5 0
(L1(p; 0)) (t,w) = F(§) t F(%)

4
2 cosw 8 b 1_ fa(s, p(s,w), o(s, w), w)
SO O

converge uniformly on [0, 1] to the unique solution of the problem (4.7)).

and

(La(p, 0)) (t,w) =

S,



Chapter 5

Successive Approximations for Nonlinear
y-Hilfer Implicit Fractional Differential
Equations

5.1 Introduction

In this chapter, we discuss the global convergence of successive approximations and
the uniqueness of the solution for a class of nonlinear ¢-Hilfer differential equations. We
provide a theorem on the global convergence of successive approximations to the unique
solution of our problem.

In the following, we investigate the uniform convergence of successive approximations
for the -Hilfer Cauchy-type problem

DI p(t) = g (£ p(t), Dep(1)); 0<a<1,0< <1, 0<a<t<bh (5.1)

I%0(a) = pa,  pa€R, y=a+b—af, (5.2)

where DZ;B ¥ is the 1-Hilfer fractional derivative, I i; 7% is ¢)— Riemann-Liouville fractional
integral, ¢ : (a,b] x R x R — R is given function and p, is a constant.

5.2 Successive Approximations and Uniqueness Re-
sults

In this section, we are interested on the main result for the global convergence of
successive approximations to the unique solution of the problem (5.1)) — (5.2).

Lemma 5.2.1 [113] Let g : (a,b] x R x R — R be a function such that g(-,p,0) €
Ci—ypla,b] for any p,0 € Ci_yyla,b]. Then the problem (5.1)-(5.2) is equivalent to the

following integral equation

plt) = S (0(0) = (@) ™+ s [ V0 =0 (5.0 D) ds. (653)

33
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Define the space G := G((a,b],R) as the following :
G:={p € Crryylay : Dg’ﬂwp exists and Dz"f;wp € Ci_ypfab)}-
For p € G, in the space G we define the norm

ol = llplley a8l + 1D plle, . [a, b]:

Remark 5.2.1 (G,| - |l¢) s a Banach space.

Definition 5.2.1 By a solution of the problem (5.1)) — (5.2)), we mean a function p € G
that satisfies the equation on (a.b] and the initial condition (5.3).

Set I == (a, &b]; for any & € (0, 1]. Let us innumerate the following hypotheses :
(H1) g : (a,b] x R x R — R be a function such that g(-, p,0) € Ci_pla,b] for any
p,0 € Cioyyla, b].
(Hy) There exist a constant x> 0 and a function w : (a, b] X (a, u] % (a, u] — R, such
that w(-, p, 0) € Ci—vypjay for any p, 0 € Ci_ypjap),and w(t, -, ) is nondecreasing for
all ¢t € (a, b], the inequality

Hg(ta P, Q) - g(tapa @)Hlemw[a,b] < w<t7 Hp - p‘|01,mw[a,b}a H(Q - @”Cl,nﬁd,[a,b]% (54)

holds for all ¢ € (a,b] and p,0,p,0 € C1yla,b] that ||p —pllo,_ @y < pand

”Q - EHCH?W;w[a,b] < M,
(H3) v =0 is the only function in G(I,, (a, 1]) that satisfies the integral inequality

ot) < o [ s, vls), DIV (W) — wls) s, (5)

INGY)
with £ <v < 1.
Define the successive approximations of the problem ([5.3)) as follows :
po(t) = Pas pusa(t) = 15 (6() — (@)

T r(loo [0~ 0 (5. puls). D pus)) .

Theorem 5.2.1 Assume (Hy)—(Hs) hold. Then the successive approzimations p,; n € N
are well defined and converge to the unique solution of the problem — uniformly
on (a.b]

Proof. There exist p1, ps > 0 such that
||pn||01,,y;w[a,e] < M1, ||D:jr/8;wpn”01,ww[a,e] < 2.

For each t1,t3 € (a,b] with ¢; < t9, and for all ¢ € (a, b], we have
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|[(w(t2) — ()] paltz) — [(U(t1) — ¥(a)]' " palte)

o) - v (5 ) - vl

1

T(v)
iy [P O) = ) (5.p0os(9, D)

|
—
<
~
~
[
N~—
|
<
—
S
=
T
=2
<
—
SN—
—
<
~
~
—
N—
<
—
»
SN—
SN—
Q
—
s
/N
»
s
S
—
—~
N~—
S}
=+
>
3
—
—
N~—
~——
U
0

[U(t2) — ()] (W (t2) — 2(s))*

()l (5. paea(8), DI pua(s)) |ds

9 (8, pn1(s), DI pus(s)) |ds.

Then

[(t2) — ()] 7 palts) — [(t) — v (a)]' " pu(ts)

LT “((ty) — (s))*

<
F( )(tPQ)GIX (a,p1]x am]

— [W(t1) — (@) (W (tr) — (s))* [/ (s)ds
! 1 [* '(s —(s))* ds
b B 0 S0 a0l [ble) - 00a) / 6 02) — (5)°
1 a—1
= m(tpg)efxs%aﬂxmml ) et
— [[p(tr) = ()] (W (tr) — ¥(s))* [/ (s)|ds

1 B . - .
To 1) upaers im0 QW) 9@ 0) =9 @)

— 0, as t; — ts.
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12 (t2) — (@) 7 pultz) — [h(t1) — (@) pul(ts)llclae — 0, as tr — ta.

On the other hand, and since g(+, p, 0) € C1_4p]a, b], then by using the Lebesgue dominated
convergence theorem, we have

[(¥(t2) — ()] (D pa)(t2) — (¢ ( 1) = ()] (DY py ) (1))
< |[h(ta) — V(@) g(ta, pu_1(ta), DX pu_i(ta))
)

— [((t1) — ¥(@)]* g(tr, pai(tr), D2 pu_s (1))
— 0, as t; — to.

Thus
ITeb(t2) = (@) (D o) (t2) = [((t1) — ()]~ (D pu) (t1) oy

— 0, as t; — ts.
So, we get
[pn(t2) — pu(ti)lle —> 0, as t1 — ta.
Then, the sequence {p,(t); n € N} is equicontinuous on (a, b].
Let
v :=sup{{ € [0,1] : {p,(t)} converges uniformly on I}.

If « = 1 and then we will obtain the global convergence of successive approximations.
Supposing that ¢ < 1, so the sequence {p,(t)} converges uniformly on I,. This sequence is
equicontinuous, which means it converges uniformly to a continuous function p(t). Proving
that there exists v € (¢, 1] such that {p,(t)} converges uniformly on [,, this leads to a
contradiction.

Put p(t) = p(t); for t € I,. From (H,), there exist a constant g > 0 and a continuous
function w : I x (a, u] X (a, u| — R, satisfying inequality (5.4). Also, there exist v € [¢, 1]
and ng € N such that, for all £ € I, and n, m > ng, we have

() = (@) [pu(t) = pru()]llclan < 1,

and

[(t) — (@) (DS pu) () = (DI o) (B)] [ty < .
For any t € [, put

o (1) = () = $(@)]*[a(t) = o (Ol cfas:

welt) = sup o),

n,m>k

Do () = [ (1) — ¢(a)] D3 pu(t) — DI pun ()l ctat

and
(DX u)(t) = sup Do) (1),

nm>k

Since the sequence vy(t) is non-increasing, converging to a function v(t) for each ¢t € I,,.
From the equi-continuity of {vg(t)} it follows that klim vk(t) = v(t) uniformly on I,.
—00

Furthermore, for ¢ € I, and n,m > k, we have



5.2 Successive Approximations and Uniqueness Results

37

o E) = (|0 = ()] 0a(t) = Pt
|[w<t> ()] (pn@:) - pmu)) U(t) ~ v(@]' l%<w<<t>> — b))
+ a7 L W) = () gl pa(5). D s ()

Po_(((t)) = d(a))™!

<

I'(7)

1/t V' (s)(W((t) —¥(s)* g (s Pm—1(5), Da’f%m—l(S)) dS]
< @0 = (@) / e ¥(s)* ]
9(8, pn-1(s ),Da+ Pn-1(5)) — g(s,pm,l(s),Da;’ Pm—1(8))|ds
< a7 [ @) = v [t — vl

[9(5, pn-1(5), D™ pua(5)) = g(s, pm-1(8), D2 pr 1 (s))]

’U(n’m)(t) < F(la)/at

[9(5. pu1(8), D pi(5)) = g(8, prui(8), DI pri (3))]

Cla,e]
x ' (s)(((t) — ¥(s))* 'ds
< 1 vt 1—vy
<@ L [[@© - v
[9(5, pn1(5), DE¥ po_i(5)) = 9(5, pm—1(8), DI prai(s)))] .
Cla,e

< ¢ (s)(1((t) —(s))* " ds.
Thus, by we get

1 vt
v(n’m)(t) < F( ) / w(s, ||[pn_1(s) — Pm—l(S)HClww[a,e]»

15 pu1()) = D™ pn1 (8)) ey ta ) () (W((8)) = (5))* s

= o [ s o (s), DEFE D () ()W) — ()" s,

F(Oé) a
Hence
1 vt o8 e
w0) < s [ s, v (5), DS s ()0 () (1) = w5)) s
By the Lebesgue dominated convergence theorem we have

F(la) /aytw(s, v(s), DY u(s)0 (8)(((t)) — (s))*ds.

v(t) <
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Moreover, by (H;) and (H3) we have v = 0 on [,,, which yields that klim vg(t) = 0 uniformly
—00

on I,,. Thus {pr(t)}32, is a Cauchy sequence on I,. Consequently {pg(t)}32, is uniformly
convergent on [, that gives us a contradiction.

Thus {px(t)}72, converges uniformly on I to a continuous function p,(t). By the Le-
besgue dominated convergence theorem, we have

. Pa ~y—1 1 t / a—1 a,;
Jim S0 0D+ g [ OO =00 (5 5), D (s)) ds

- r/@) () = (@)~ + r(loo /at V)W) = ¥() g (5,p:(5), D puls) s,

for each ¢ € I. This means that p, is a solution of the problem (5.1))-(5.2).

Finally, we prove the uniqueness of solutions of the problem (5.1)-(5.2)). Let p; and py
be two solutions of (5.3). As above, put

T:=sup{f € [0,1] : p1(t) = pa(t) fort € I},

and assum that 7 < 1. There exist a constant g > 0 and a comparison function w :
Lixo,u)x [0, —R, satisfying inequality (5.4). We take v € (£, 1) such that

lor(t) = p2)lles_ptae < 1 and (DG o1)(8) = (DE p2) (Dller_pta < b5

for t € I,,. Then for all t € I,,, we obtain

Io1(6) = patt)lcaton < 7 [ HEOW) = (e [(0(5) = v
905 pols). D3 ls) = a1 (6)- DL ()| s
< w7 LV O@0) — v

w(s, [1po(s) = pr($)ller . ulatts |1 Dot po(s) = D™ pa(s)lles .y ptan)ds.

Again, by (H;) and (Hj3) we have p; — ps = 0 on [,,. This gives p; = pg on I, which yields
a contradiction. So, 7 = 1 and the solution of the problem (5.1)-(5.2)) is unique on (a, b].

5.3 An Example

Consider the following i-Hilfer Cauchy-type problem

(*) 7ef(1+|p(t)|+ Do%ﬁ’lﬂp(t) ) (5.6)

1
127 p(0) = po,  po €R.
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where the function 1 : [0,1] — R is defined by ¥(t) = \/t + 2.
We have g (t,p(t),Déﬁ’wp(tO € leg,d,[(), 1], t € (0,1], and
lo(t.p. 0) = 9(t:2.9)lle, ; o = max[v(t) = ¥ (0)]|g(t. p,0) — (¢, p. D
2 2
Te'(1+ ol +lel)  Tet (1+[pl + |@|)‘

s P + lol — || — |o|
max [v/(t) — ¥ (0)) L+ 1o+ o) X+ 7] + |@|)'

< - max[v(t) = w(0)]* lo — 7l + e — ol

= max[¢(t) — ¥ (0)]3

2 _ _
=2 (o =lle,_y gou +lle=ho,_y o )

The condition(5.4)) holds with any ¢ € (0, 1], p and the function w : [0, 1] x [0, ] — [0, 00)
given by

wlt.p.0) = 2o+ 0).

Consequently, Theorem [5.2.1] means that the successive approximations p,; n € N,

defined by
po(t) = Up ; te (O, 1],

P (t) = Fﬁz)w — (a))i!

PRy P OWE o)A (5.0, DE (o)) s v € 01),

converge uniformly on (0, 1] to the unique solution of problem (5.6)).



Chapter 6

Existence and Attractivity Results for
y-Hilter Hybrid Fractional Differential
Equations

6.1 Introduction

In this chapter, we focus on the existence of attractive solutions of fractional differential
equations of the -Hilfer Hybrid type. The results on the existence of solutions are applied
to the Schauder fixed point Theorem. Then, we prove that all solutions are uniformly
locally attractive.

Recently hybrid differential equations see[48] and hybrid fractional differential equa-
tions attracted the attention of a large wide a researchers [22, [47), 58, 66, [67, 104, TT5].

Functional ¢)— fractional differential equations has a great importance in applied ma-
thematics and other sciences, see [24], [75], [78] 103, TTT], 112, [114].

In this work, we are concerned with the existence and attractivity of solutions for the
following problem

o(t,p(t))

(W) = (0)'~p(#) li=0=po; o €R,

where Ry :=[0,+00), 0 <A <1, 0< o<1, ¢=A+a(l—2N), "D} is the ¢-Hilfer
fractional derivative of order A and type o, po: R, xR = R* and w: R, Xx R — R, are
given functions.

{Déf”” s —w(t,p(t)); ae. tER,, 6.1)

Special cases :
e For 0 = 0,1(t) =t, po = 0, we will get nonlinear hybrid FDEs of the form

REDy 245 ] = w(t, p(t)), ae. t € Ry,
p(0) = 0.

e For A = 1,0 = 1,9(t) = t, we obtain nonlinear integer order hybrid differential equations
of the form

d t
< [Q(f’;()t))} =w(t,p(t)), ae. t € Ry,
p(0) = po € R.

40
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e For p = 1, we acquire nonlinear -Hilfer FDEs of the form

(¥(8) = ¥(0))' = p(t)],— = po € R.

e For p = 1,0 = 0 (in this case ¢ = \),¥(t) = t, we get nonlinear FDEs involving
Riemann-Liouville fractional derivative

{HD*W p(t) = w(t,p(t)), ae teR,,

RLDY plt) = w(t, p(t)), ace. t € R..

6.2 Existence and Attractivity Results

Let BC := BC(R,) be the Banach space of all bounded and continuous functions
from R, into R. By BC. := BC.(R,), we denote the weighted space of all bounded and
continuous functions defined by BC. = {¢ : Ry — R : (¢(t) —1(0))~¢(t) € BC'}, with

the norm

6]l 5c. == sup |((t) = $:(0)'“6(1)|.

teR,

Lemma 6.2.1 [7§] Letv € C(Y xR,R*) ; T :=[0,d], d > 0, k € C1_¢4(Y). The problem

Ao p(t)
D0+ Q(tf;W = /i(t),(l.@. t e T
(V(t) = (0)'<p(t) li=0=po,  po € R,

has a unique solution given by

Po -1 Ay
1) = o(t, p(t)4 —Lo () — (0)) L 4+ 1 m}.
90 = olt. D] 5 (910 = O 4 B ()
Lemma 6.2.2 [78] Let p € C(T x R,R*), w : T xR — R be a function such that
w(-,p(+)) € BC. for any p € BC.. So the problem is equivalent to the integral
equation

Po 1 A
p(t) = o(t, p(t {1/)75 —(0)) " + I w(-, p(- t}.
(t) = olt, p(t)) Q((),p(o))( (t) —¥(0)) ot w(- p(-))(t)
Definition 6.2.1 A function p € BC; is a solution of problem(6.1), if it verifies the
initial condition (¥ (t) — ¥ (0))'=p(t) |i=0= po and the equation DM”Z’ (f%)) =w(t, p(t))
on R,.

We provide the following hypotheses :
(Hy) The function t — w(t, p) is measurable on R, for each p € BC., the function
p — w(t, p) is continuous on BC. for a.e. t € R, and the function g is bounded
such that p — o(t, p) is continuous.
(Hs) There exists a continuous function 7' : R, — R, such that for a.e. ¢ € R, and
each p € R,
T(t)
L+ ol

[w(t, p)| <

and

lim (6(2) = $(0))'~* (1) (1) = 0.

t—o0
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Set
T = sup ((t) — (0))' = (I)¥T) (1) < .

teR4

Now, we introduce a theorem on the existence and attractivity of solutions of the
problem ([6.1]).

Theorem 6.2.1 Assume (Hy) and (Hy) hold. Then the problem has at least one
solution defined on R, and the solutions of problem are uniformly locally attractive.

Proof. Consider the operator K such that, for any p € BC.,

(Kp)(t) = ot p<t>>{g<0f’/§(0))w<t> o)

g o V00— v el s

Let L be a bound of the function p. For any p € BC,, and for each t € R, , we get

S|g<t,p<t>>|{| malt

0(0, p(0))
/ V(s Y(s ))*‘Ww(s,p(s))us}

(¥(t)
<mtp\ﬂ ‘
0

/ S0 o) T

SL{MM”*‘}
=R,

| ((W) (0 (Kp)(1)

So
1K (p)ll e, < R.. (6.2)

Consequently, K(p) € BC.. Since, the map K(p) is continuous on R, ; for any p € BC.,
and K(BC.) C BC,, so the operator K maps BC. into itself. Meaning that, equation
(6.2) shows that the operator K transforms the ball

BR* = B(O,R*) - {Q S BC§ : ||Q||BC< < R*}

into itself. From Lemma [6.2.2] the solution of problem (6.1]) is equivalent to find the
solution of the operator equation K (p) = p. We check that the operator K : BC. — BC.
satisfies all assumptions of Theorem The proof is divided into multiple steps :

Step 1. K is continuous.

Let {p,},cn be a sequence such that p, — p in Bg,.
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Then, for each t € R, , we have

(W) = (0))5 (K pn) (£) = ((8(#) = 1(0)) (K p)(1)|

< Lot 2+ OO 1)) = ol (o) is
 olt 0] s + PO [ )00 - v s po)as
< ot mion] g + PO [ 00 - vt pne)is
ot o) g OO )00 — w60 N s |
olt 0] s OO ) — v s (o)
ottt S + T [0 - v s po)as)

< ot o) = e pt0)] | 52+ OO [ -

(¥(t) — ¥(0))'
I'(A)

x [ W0 — 0P (s, pals) — wls,pls)lds.

Hence

X w(s, pu(s))ds| + [o(t, p(1))|

[((©(t) = 1(0))' 7 (Kpn) (1) = (((t) — ¥(0))' (K p)(1)]

(
< |g<t,pn<t>> ~ oft plt)) {

OOV () (1 (8) — () o, pn<s>>|ds}

po
2(0,0(0))

2 [s P (s, pals) — wls. p(s))lds. (63)

Case 1. If t € [0,d], then taking into account of the facts that p, — pasn — oo v and

w are continuous, by the Lebesgue dominated convergence Theorem, from the equation
(6.3), we have
IK (pn) = K (Dllpe, 0 a5 n— ool

Case 2. If t € (d,00), then from the hypotheses and , we have
() = ©(0)' = (K pa) (£) = () — $(0)' (K p)(1)|

o(t, pu(t)) — Q(t’p<t)>|{‘(0p§(0))|

Lo /w “T()d}

+or /w YT (s)ds.
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Then
() = (0))' 7 (K pa) (£) = () — 1(0)' (K p)(1)|

< [atsul0) = a0 { |2+ (00 = w0 (27 (0}

F2L(( () — (0)' = (1T (¢). (6.4)

Since p, — p as n — oo ,0 is continuous and ((¢(t) —(0))1~ (Ia\ﬁ’T) (t) = 0ast — oo,
it follows from (/6.4)) that

1K () = K(P)llpo, =0 as n— oo

Step 2. K (Bg,) is uniformly bounded, and equicontinuous on all compact subset [0, d]
of Ry, d > 0.
We have K (Bgr,) C Bgr, and Bg, is bounded, so K (Bg,) is uniformly bounded.
Next, for each t1,ty € [0,d],t1 < t2, and p € Bg,, we have
[((t2) = (0))'7 (Kp) (2) = ((t2) = (0))' (K p)(t)]

' ()] 2y + o [0 s ol oo)as

ey
ottopttn) g s+ L 1 oy ut) = w60t o
ot plea)] g s + );(;”)(0”“ [ 600 - st poas|
s e s O [ 0y 0t) = o)t s
ot pte )] s POV [ oy 0t) = o))t s
atn e g2+ LT O 1% )0 = w0 Y s | |

Thus

Po
< ’g(t2,p(t2)) — o(t1, p(t1)) 20, p(0))
. w(tz);(;w)(()» i /0 () () — (5)* (s, pls))ds

TV
D T ) (0) = ()Pl )

D)e

V()@ (1) — () (s, p(s)ds).

lattn o)L [ 0w - v ool
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(¥(t2) — $(0))'7 (Kp) (t2) — ((w(t1) — $(0)) = (Kp)(t)|

Hence ’

<

o(t2, p(t2)) — olt1, p(t1)) (‘9(0?&0»‘
(¥(tz) — ¥(0))1—

" T(\) /otz W (s)(1(t) — () (s, p(S))ld5>

+L</Ot1 (730(152);(?\0)(0))1gw,(s>(¢(t2) - w(s))k—l

(W(t) —¥(0)) -1
_ X0 W (s)(h(tr) — ()

s ot + O )0 = ), s

<

o(t2, p(t2)) = o(ty, p(t1)) <|Q(0ppo(0))|
(th(t2) — 1(0))'~

+ I‘()\) /Otz ¢’(s)(¢(t2) _ @D(S))A_lT(s)ds)

+L</Ot1 (¢<t2> ;(;b)(o))l_g¢’(s)(¢(t2) _ w(s)))\fl

(Y(t) —(0))'— A-l
_ ) () (W(th) — ¥(s))

Tiogds + PO [Tt - w<s>>“T<s>ds).

From the continuity of the functions T" and v, by setting T\ = sup;cjo g T(t), we get

(%) = $(0)' % (Kp) (2) — (¥(t1) — $(0)' (K p) (1))

< |Q(t2>P(t2)) = o(ty, p(t)) (’Q(Of);(o))‘
T (4 (tz) — 9(0))'

T(\) /Otz W (s) (¥ (t2) — w<s))“ds>

v ([ ) - vl
((h) — (o),

- RS () i) — v

sy (DSOS 1 ) ) o)

< |g<t2,p<t2>> — ot plt)) (‘@(oppam‘

T.(¢(t2) — 9(0))' | (1h(ta) —p(0)' <,
* T+ 1) >+LT*</0 ey
(¥(t) = ¥(0)'— ,

- w0 (n) - v(s)

(¥(t2) —(0))"* A
T(A+1) (U(t2) —¥(t)) )

ds

+

W (8)((t2) — (s)
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As t; — to, the right-hand side of the inequality tends to zero.
Step 3. K (Bg,) is equiconvergent.
Let p € Bgs. Then, for each t € R, , we have
1—¢ Po
(w0 = sor=nm] <lote. o0l | %51
| PO [ ) = ol s |
Po
< lat | 525
(V) —(0) =< rt 1
i | SO ) = ot T s
Po 1—¢ ;
< 2| |+ o s (2 7) (0
Since
() = ()™ (10T (t) = 0 as t — +o0,
we find
9o (W (t) = (0)'= (1) (1)
T ) R e e
Then,

(Kp)(t) — (Kp)(+00)] = 0 as t— +oo,

in sight of Lemma[l.3.8|as a consequence of Steps 1 — 4, we conclude that K : Bg, — Bg,

is compact and continuous. The Theorem [1.4.1] ensures that K has a fixed point p, which
is a solution of problem (6.1)) on R,.

Step 4. The uniform local attractivity of solutions.
We assume that p, is a solution of problem (|6.1]).
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Set p € B(p*,ZL{ PO p(o))

+2T* }) we have

(@ (E) = 9(0))'™ (Kp) () = ((t) = (0)) ~“(p)(1)
< () = 0(0))' 75 (Bp) () = (((8) = (0)) (K. ) (1)
< ot 1) — oft. . H]Q ‘
+ 0 / W = P ool
/ W (s)(Wt) = (s) (s, p(s)) = wls. pul(s))|ds
< QL{ Q(Ofg(o))‘ / W(s P 1T(s)ds}

+ 20 AR [Tt 0() — v(s) T ()
Po *
<21{| g 21}
Thus, we get

00
200, p<0>>‘ e }

Concluding that K is a continuous function so that

<ol ) < el + )

Additionally, if p is a solution of problem (6.1]), then

1K (p) = p:ll e, < 2L{

|
c—1 Po
< ’Q(t p(t)) — olt,p ((t))’{(zb(t) (0)) g<o,p(o))|
+ FSA)/t & () (W) = () (s p(s))lds}
+ P(LA) ot W (8)((t) = () Hw(s, p(s)) = w(s, p((s))]ds
s—1 L
= 2L{<W> YO, p<o>>'

o 0 = ) s pteles|
0 L O = D) . pls) = (s (5)) s

Po ‘ +2(18°T) (t)}'

- 2L{(¢(t) — O G0
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Equations
Therefore,

Po (1(t) = (0)' (i) (t)}
0(0,p(0)) ’ TR0 - o) . (6:5)

Ip(t) — pu(t)| < 2L{(¢(t) — (0))s!

By using (6.5 and the fact that

Jim (4(8) = $(0) (RO =0,

we conclude

Jim [p(t) — p.(t)] = 0.
Hence, all solutions of problem (6.1]) are uniformly locally attractive.

6.3 An Example

We consider the following problem for a -Hilfer fractional differential equation

{D&*@é%»:umamo%wa teR,,
(W (1) = (0))7p(t) li=o= 1,
where ¢ : [0, 1] — R with ¢ (¢)

(6.6)

=i+ 3,
1
t? - )
P) = T+ o)
;1
4
5(<w(t>—w(o>> sint
w(t, p) = VO t e (0,00), peR,
w(0,p) =0, p €R,
and 0\/7
T
ﬁ =

16
Clearly, the function w is continuous. Hypothesis (H») is satisfied with
-1

a
p ((w(w—w(O)) | sint]
T(t) = te

64(1—&-\/{) ’ (07 OO),

In addition, we have

=
VR
—~
<
—~
~
N—
|
<
—
(@)
S~—
~—
N

(w0 -v0)" (127) ()=

giwa—wm>4%o as ¢ — oo.

All conditions of Theorem are satisfied. So, problem has at least one solution
defined on R, and all the solutions of this problem are uniformly locally attractive.



Chapter 7

Successive Approximations for
Caputo-Fabrizio Fractional Differential
Equations

7.1 Introduction

In this chapter, we discuss uniqueness result of solutions for a class of fractional diffe-
rential equations involving Caputo-Fabrizio derivative. We provide a result on the global
convergence of successive approximations.

The convergence of successive approximations for nonlinear functional equations,and
on global convergence of successive approximations of problem for functional differential
equations have attracted many researchers. In 1968, Browder [41] gave a brief and trans-
parent proof of a generalization of the classical Picard-Banach contraction principle by
using the convergence of successive approximations. In 1981, Chen [44] used the succes-
sive approximations method to prove the existence of solutions for the functional integral
equations

{ xz(t) = f(t); t€lo—r,0]
w(t) = f(t) + [y g(t,s,25)ds; t € [o,0].

In [46], Czlapiinski studied the global convergence of successive approximations of the
Darboux problem for partial functional differential equations with infinite delay, and in
[57], Faina studied the generic property of global convergence of successive approximations
for functional differential equations with infinite delay.

In this chapter, we begin the study of the global convergence of successive approxima-
tions for Caputo-Fabrizio fractional differential equation(CFFDE)

{ ;?S)Dzépp)g) = p(t,p(t)); t €T :=10,A (71)

Here “¥ Dy is for the CFFDE, 0 < s < 1, ¢ : [0,A] x R — R is continuous and p, € R.
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7.2 Successive Approximations for Caputo-Fabrizio
Fractional Differential Equations

Lemma 7.2.1 [17,[9])] Let p € L*(Y). Then the problem
CF s _ . —
IO<O) = Po;

admits a unique solution which is given by

2(1—s) 2s t
PO =+ G e PO~ #O)+ G | e (13)

The family which contains all real valued and continuous functions on the interval T which
is a Banach space supplied with the norm

oIl = sup [p(2)].
teT

This section is devoted to the main result of the global convergence of successive approxi-
mations.

Definition 7.2.1 The solution of the problem (7.1) is a function p € C(Y) which satisfies
the equation (“F'Dip)(t) = o(t, p(t)) on T and initial condition p(0) = py.

Set T, := [0, pA]; for any p € [0, 1]. We cite some hypotheses
(Hy) The functions ¢ : T x R — R are continuous.
(Hy) There exist a constant ¢ > 0 and a continuous function i : T x [0,¢] — R, such
that h(t,-) is nondecreasing for all t € T, and the inequality

lp(t, p) — (t, )| < h(t,|p—pl), (7.4)

holds for all ¢ € T and p,p € R such that |p — p| <,
(H3) R =0 is the function in C' (Y5, [0,<]) which satisfies the inequality

_A-s) 2%
B 0 ) 0o, PRI+ G | hir, )y 5)

with o <6 < 1.

R(t)

We define the successive approximations :

po(t) = po; tE€ T,

2(1—s) 2s

prta(t) = po + W(@(ﬂ pu(t)) = (0, po)) + (2_8)]\4(5)/0 o(7, pu(T))dT; T €T

Theorem 7.2.1 Assume (Hy)— (Hs) hold. Then the successive approzimations p,;n € N
are well defined and converge to the unique solution of problem (7.1)) uniformly on Y.
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Proof. There exist n > 0 such that

nlloo < 1.

Let

w= sup |o(t,p)l
(t,p) €T x[0,n]

For each t1,t5 € T with ¢t; < ty, and for allt € T

on(t2) = pult)] < oo+ 520 (ol paca (1) — (0. )

b et = [ 2 ot (1) = ol0m)
+ o ]

< i (Pl e = ltn pa(8)

+ i (7 etrssonar = [ ot aioir)|

< \&%wz,pm(m) — ot (1))

o o e ()i

< G el () = el (1)

PR S,

2 —s)M(s)" )

From the continuity of the function ¢, we have

|on(t2) — pult1)] < mw(tz,pn_l(tz)) — @(t1, pu—a1(tr))]
+ L’W(lb — tl)
(2 —s)M(s)

—>0, as t1 — .

Hence
lon(t2) = pu(t)l — 0, as &1 — ta.

And we get the equi-continuous on Y of the sequence {p,(t); n € N}.
Let
v:=sup{o € [0,1] : {p,(t)} converges uniformly on Y,}.

If v = 1, and then we will obtain the global convergence of successive approximations.
We suppose that v < 1, and the sequence {p,(t)} is equicontinuous on Y,, converging
uniformly towards a function p(t). If we show that there exists § € (v, 1] such that {p,(t)}
converges uniformly on Yy, then it leads to a contradiction.
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Put p(t) = p(t); forallt € T,. From (H), there exist a constant ¢ > 0 and a continuous
function h : T x [0,¢] — R, checking inequality (7.4)). So therefore, there exist ¢ € [v, 1]
and ng € N, such that for all t € T5 and n, m > ng, we get

|pn(t) — pm(t)| < C.

For all t € Ts, put
R™™(t) = |pa(t) = pm(t)],

Ry(t) = sup R™) (¢ (1).

n,m>k

Ry(t) is the non-increasing sequence, thus it converges to a function R(¢) and that for all

t € Ts. From the equicontinuity of {R(t)} we have klim Ri(t) = R(t) uniformly on Yj.
—00

And further, for each t € T5 and n,m > k, we get

R (t) = |pa(t) — pun(t)|

2(1 — s) 2s '
< ot =y B () = 9O p) + e | em ()

2(1—s) 2s ¢
=M= G 1) P P 0) = @(0.0)) = s [ pma (7))
2(1—s)
< m‘ﬂtapn—ﬂt» — @(t, pm-1(t))]
Gy 190 et (7) = ol ()i
A(1 = s)
S @ M) 4 le(t, p)| + 2= M) / [o(7, pn-1(7)) — @(T, pr—1(7))|dT
4(1 —s) 2s
< m(t’p):’;ﬁmm”ﬂtapﬂ +(2—5)M(s)/o 2(7, pu-1(7)) = (T, prm—1(7)) dT,
therefore, by we get
nm A(1 — s)
R0 < G 3o )
2s ot
F ) b M e (7) = (s
A(1 = s) . 2s e lmed) (1)) g
S B M 30 PP iy MR
then
Rl € G s ()] + s [ b B ()

By the Lebesgue dominated convergence theorem we have

41— 5) su 2 7, R(T))dT
A< (5 A 380 PPN @ 00 o P
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By (H;) and (H3) we have R = 0 on Yy, which gives that klim R (t) = 0 uniformly on Yj.
—00

Thus {pk(t)}72, is a Cauchy sequence on Ys. So {px(t)}72, is uniformly convergent on Y

which gives the contradiction.

Thusly {px(t)}32, converges uniformly on T to a continuous function p,(t). By the
Lebesgue dominated convergence theorem, we have

. 2(1 — s) 2s :

Jim po + m(@(t, pr(t)) — ¢(0, po)) + (2—5)]\/[(5)/0 o(7, pi(7))dT
2(1 — S) 2s t

= po+ m@(t, p«(t)) = ©(0, po)) + (2—3)]\/[(3)/0 o(T, p(7))drT,

for all t € Y. This leads to p, being a solution to the problem ([7.1)).

Now, we demonstrate the uniqueness of the solutions of the previous problem ([7.1J).
Let p; and py be two solutions of ([7.1)). Then put

v:=sup{o € [0,1] : pi(t) = pa(t) for t € T,},

and suppose that 7 < 1. There exist a constant ¢ > 0 and a function A : TPX[QC]—)R .
verifying inequality ([7.4]). We choose ¢ € (p, 1) such as

lp1(t) — p2(t)] < ¢

for t € Ts. Then for all t € T, we get

4(1 —s)
1p1(t) — pa(t)] < BN lp(t, p)
2s ot
a6 ) = elm ()i
4(1 —s) ‘1
= 2= $)M(5) ppetsxioa Plter)
2s ot
T M)~

Again, by (H;) and (H3) we get p1 — p2 = 0 on Y. This gives p; = py on T, which leads
to a contradiction. So, 7 = 1 the problem (7.1]) admits a unique solution on Y.

7.3 An Example

We consider the following Caputo-Fabrizio fractional differential Cauchy problem :

(CFD(S)p)(t) = @(tvp(t)); teY = [07 1}7 s € (O’ 1)7
{ p(0) = 1, (7.6)

where
t

(1+2) (1 + [p(t)])

Pt p(1) = (e + Ip(1)])
For each p, p€ Rand t € T, we have

o(t, p) — (t,p)] < t(1+e"Hlp—7l.



54 Successive Approximations for Caputo-Fabrizio Fractional Differential Equations

This leads to the condition ([7.4)) that holds for each t € T, ¢ > 0 and the function
h:10,1] x [0,{] — [0, 00) such as

h(t,p) = t(1+e7)|pl.

Then, Theorem leads us to the successive approximations p,; n € N, defined by

2(1—s) 2s

@ i1 PP ®) = O ) + s [eln pulr))dr: € T,

converges uniformly on T to the unique solution of the problem (7.6]).

potr(t) =1+



Chapter 8

Hilfer-Hadamard Fractional Differential
Equations ; Existence and Attractivity

8.1 Introduction

This chapter studies a class of Hilfer-Hadamard differential equations. We prove a
result of existence and attractivity of solutions.

In [II], Abbas et al. study some existence and Ulam stability results of the following
problem

(ID7Yi)(t) = x(t.i(t);  te (1T,
H17%) (1) =d, o=1+0(1—7).

We devote this work to the existence and attractivity of solutions of the following
problem
8.1
(1)) = d, p=7 4601 7), &:1)
where d € R, x : [c,+00) xR — R, # I(}I ¢ is the left-sided Hadamard fractional integral of

order 7 > 0 and # DZ’f is the Hilfer-Hadamard derivative operator of order 7 (0 < 7 < 1)
and type 0 (0 <0 <1).

{(Hszw(w = x(t,i(t); T € [e,+00), ¢ >0,

8.2 Existence and Attractivity Results

We introduce some spaces. We denote by C,ioglc, €], (0 < ¢ < e < 00), the space
Cotoglc,e] = {v: (c,e] = R: (log£)!72 (t) € Clc, €]}, with the norm

(log Z)l_g L(t)‘ |

BC* := BC(][c, +00)) denotes the space continuous and bounded functions ¢ : [¢, +00) —
R.
BC, = {v:(¢c,+00) = R : (logé)l_%(t) € BC*}, with the norm

t\1-e
ltllBe, == sup (log ) L(t)].
t€[e,+00) c

||L||Cg,log - Sup
te(c,e]
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Denote ||¢||pc, by [[¢]|Bo--
Corollaire 8.2.1 [72] Let o € Cy0g(I). The problem

(D) = olt), tel =]
(1500 (c) = d,
admits the following unique solution
d AGEE
i(t) = —— (log - A1m.o) (1). 8.2
i) = gy (loe )+ (M120) ) (52)

Lemma 8.2.1 [72] Let x : (c,e] xR — R be a function such that x(-,i(-)) € BC, for any
i € BC,. The problem s equivalent to the integral equation
d t\e!
i(t) = —— (log - TITox(d()) (2). 8.3
i) = pgy (loa )+ (ExCi()) (0 (83)
Definition 8.2.1 A function i € BC, is a solution of if it verifies (Hljfgi)(c) =d,
and the equation (T DTY)(t) = x(t,i(t)) on [c, +00).
We assume the following hypotheses :
(Hy) The function t — x(t,7) is measurable on [¢, +00) for each i € BC,, and i —

X (t, 1) is continuous.
(Hy) There exists a continuous function [ : [¢, +00) — [0, +00) such that

1)

Ix(t,9)] < T+ forae. telc,+00) and each i€R,
and
: 13 e H 7T
lim <log C) ("12.1) (1) = 0.
Set

* 14 1-e H T
I = sup)(logc> ( C+l) (t).

tefe,+o00

Theorem 8.2.1 Assume (Hy) and (Hy) hold. Then has at least one solution which
is uniformly locally attractive.

Proof. Define the operator L by
d t\et 1 gt AN ds
Li)(t) = — (log - /(1 ) Ji(s))—.
i) = gy (e )+ gy [ (loag)  xts i)

We prove that the operator L maps BC, into BC,. Indeed ; the map L(i) is continuous
on [¢,4+00), and for any ¢ € BC, and, for each t € [c, +00), we get

(1oa2) "o < 40+ (os1) * [ (oa D) ints, it

~ I'(o) [(7) s
|d| (lOg %)179 t t T—1 ds

ST " T / (log s> s

<l

~ I'(o)

= R",
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SO
IL(D)]Be, < R (8.4)

Therefore, L(i) € BC,, which proves that the operator L (BC,) C BC,. Equation (8.4))
implies that L maps

Bp. = B(0, R") = {v € BC, : |v||sc, < R'}
into itself.
Step 1. L is continuous.

Let {in},cn be a sequence converging to i in Bg-. Then,

| (108 2) ™ (i) (0 — (106 ) <L¢><t>|

= r(lr) /ct (log 2)7_1

Case 1. If t € [¢, T],T > 0, then i, — i as n — oo and from the continuity of y, we get

s (s5)

S

(1o 2) ™ xssinton) — (108 L) " xts.ito)

1L (in) = L(i)|l e, =0 as n— oo.

Case 2. If t € (T, 00),T > 0, then (8.5 implies that

o) 0~ ) ] <05
X /Ct (log z>7_1 l(S)Cis’ (8.6)

1—
since 7,, — 7 as n — oo and (log i) ¢ (H[;Ll) (t) — 0 as t — o0, it follows from that

IL (in) = L(i)|| e, =0 as n—oo.

Step 2. L (Bpg+) is uniformly bounded and equicontinuous.

Since L (Bg+) C Bg+ and Bpg~ is bounded, then L (Bg+) is uniformly bounded.
Next let t1,ts € [¢,T],t1 < t2, and let i € Br«. This yields

(1ogt2)”<m><> (log Y iy )

log c >1 g F(Q Q | * F(lr) /ctQ (log t;)Tl X(s,i(s))isl
- (logté) % (log “)H rig [ () xesion ]
)
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Then, we get

1 1 to 1—e to Tl i\ t1 71 . ds
log = log = — (1og == log = =
tr f |(oeg) (e ) —(leat) (og7) Ix(siten
1-o
(og2) ™ /oy s
T(r) /t (logs> o)
1 t1 to\ 170 ta\7 ! ti\'¢ i\t ds
*rm/c (bgc) (10g3> ‘(IOgJ (1"%5) Hs)

Thus, we obtain
£\ -0 . £\ 1—¢ .
](mgj) (L) (1)~ (106 ) ™ (i) (1)

1-o
I, (log &2 ¢ -1
§< gc) /2(logt?> ds
t1

() s 5
t1 1—p T—1 1—p T7—1
+ b / (log t2> (log 752) — (log tl) (log tl) %
(1) Je c s c s s
L(og ) g
Lty
F(T + 1) tl
t 1—p T—1 1—p 71
+ b /1 (log 252) (log tQ) — (log tl) <log tl) @
(1) Je c s c s s

As t; — to, the right-hand side of the inequality tends to zero.

Step 3. L (Bg~) is equiconvergent.
Let t € [¢,+00) and let i € Bg-. We have

() ™ oo 2+ L5 1 o) o

log £ e 1 S
= r|<d£|)) +( 1%(7)) / (logt> 1)

|d| t e Hyr
< (o) + (log c) ( I l) (t).

Since

t\1e
<10g > (HI;J) (t) = 0as t — +o0,
c
we find

(Li)(1)] < d N (log )" (Hl 1) (t)
(log ) “T(e) (log )"

—0 as t— +oo.
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Hence
|(Li)(t) — (Li)(+00)] = 0 as t— +oc.

As a consequence of Steps 1 — 3, L : Br — Bpg- is compact and continuous. Using
Schauder’s fixed point Theorem, we get that L has a fixed point ¢, which is a solution of

problem (.1]) on [¢, +00).

Step 4. Assume that i is solution of (8.1). Set i € B (i, 2[*), we have

(102 2) ™" e - (1) i)
_ ‘ (log Z) L — (log i) o (Lz’o)(t)‘

< Oli) [ (108 D) o) — xsvin(s) |1

S

We get
I1L(2) = ioll pe, < 207

So L is a continuous function such that

L (B (ig, 21)) C B (io, 20*) .

Moreover, if 7 is a solution of problem (8.1f), then

[i(t) = io ()| = [(La)(2) = (Lio) (1))

= I'(7) S
<2("I51) (1)
Therefore,
1-p
. . 2 (log HITT) (#)
[i(t) — io(t)] < oz ) t<1g* )®,
(log E)
By and
lim (log t)l_g (H ;l) (t) =0,
t—o0 C
we get

lim [i(t) — io(t)] = 0.

t—o00

Hence, solutions of (8.1 are uniformly locally attractive.

L (e 5) T bt i) — x (oo &

(8.7)
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8.3 An Example

Consider the problem

11
(Hl)112+22)(t> = X(t, Z(t))v t e [1, —|—C)O)7 (8 8)
("I4i)(1) = 1,
where »
- _ A(logt)” /" cost .
X(t7l) - ma te (1700)7 (S R? (89)
x(1,i) =0, i e R,
and
A= VT
16
Clearly, the function x is continuous. (Hs) is satisfied with
_ AQlogt)" | cost]
o - e e 810
I(1) =0, '

and i )
1 t —-1/2
(logt)i Hpl2y(4) = (ogtl)/ <log t) @ds
r (5) 1 s s
1
< 1 (logt)™* =50 as t— .

Hence, the problem ({8.8)) has at least one solution which is uniformly locally attractive.



Conclusion and perspective

In this thesis, we have proved some results on the existence and attractivity of the solu-
tion for two classes of nonlinear -Hilfer hybrid and Hilfer-Hadamard fractional differential
equations. We used the Schauder fixed point theorem and we proved that all solutions are
uniformly locally attractive. Other results on the global convergence of successive approxi-
mations and the uniqueness of the solution for initial value problems involving implicit
Caputo g¢-difference equations, Caputo-Fabrizio, random coupled Hilfer and w-Hilfer hy-
brid Caputo fractional differential equations are also considered.

For further research, we can study the global convergence of successive approximations

for more general problems, such as studying problems involving Hilfer-Katugampola. We
can also extend the considered problems to the Fréchet space setting.
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