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Abstract

This thesis presents a comprehensive study of planar polynomial differential systems,
which are fundamental in the qualitative analysis of differential equations. Among the
dynamic behaviors of interest are limit cycles closed periodic solutions that characterize
long term system behavior and stability. The central problem lies in proving the existence,
number, and stability of such cycles, especially in specific cases such as Bernoulli and
Riccati equations .Within this framework, the thesis reviews key preliminary notions such
as vector fields, equilibrium points, invariant curves, and Darboux integrability, alongside
analytical tools like the Poincaré map and the Hartman Grobman theorem for classifying
behavior near critical points.

The core contribution consists in studying and interpreting the results from Clàudia
Valls’ article [44], where I reformulated and simplified the theoretical proofs concerning
rational limit cycles, and enriched them with illustrative examples and diagrams aimed
at enhancing understanding.

Keywords: Planar polynomial differential systems, vector field, periodic solutions,
phase portrait, equilibrium points, integrability, rational limit cycle, Bernoulli equation,
Riccati equation.
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Résumé

Ce mémoire présente une étude approfondie des systèmes différentiels polynomiaux plans,
qui jouent un rôle essentiel dans l’analyse qualitative des équations différentielles. Parmi
les comportements dynamiques les plus significatifs figurent les cycles limites, qui sont
des solutions périodiques fermées représentant la stabilité et l’évolution à long terme du
système. Le principal enjeu réside dans la démonstration de l’existence, du nombre et
de la stabilité de ces cycles, notamment dans des cas particuliers comme les équations
de Bernoulli et de Riccati. Dans ce cadre, le mémoire passe en revue un ensemble de
notions fondamentales telles que les champs de vecteurs, les points d’équilibre, les courbes
invariantes et l’intégrabilité au sens de Darboux, ainsi que des outils analytiques comme
l’application de Poincaré et le théorème de Hartman Grobman, utiles pour la classification
du comportement local près des points critiques.

La contribution principale de ce travail consiste en l’étude et l’interprétation des résul-
tats de l’article [44] de Clàudia Valls, dont les démonstrations théoriques sur l’existence
de cycles limites rationnels ont été reformulées, simplifiées et enrichies par des exemples
illustratifs et des schémas explicatifs facilitant la compréhension.

Mots clés : Systèmes différentiels polynomiaux plans, champ de vecteurs, solutions
périodiques, portrait de phase, points d’équilibre, intégrabilité, cycles limites rationnels,
équation de Bernoulli, équation de Riccati.
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هظمة الخفاضلية متؼددة الحدود في المس خوى، باغخبارها  أ غطت هذه المذكرة دراسة شاملة لل 

من المواضيع ال ساس ية في الخحليل النوغي للمؼادلات الخفاضللية  وملن  لل السللوكيات امينام   لة 

سل خترار  ل  االتي ثبرز في هذا الس ياق ما يؼُرف بامورات الحديلة، و  لللول دوريلة مةلتلة ثؼ

جبات وجود مثلل هلذه امورات ويديلد ػلددها  النظام وسلوكه طويل ال مد  وحكمن الاإشكالية في اإ

في هللذا الاإطللار، جسلل خؼر   واسلل خترارا،ا، لا سلل ح في لللالات عادللة رؼللادلات تيرهللو  وراللكا  

يات الثا خة، والخكاملل المذكرة جملة من المفاهيم التمهيدية مثل الحتول الاتجاهية، هتاط الخوازن، المنحن 

غروبملان، اللتي -ومبرهنلة هارالان  دار و، اإلى جاهب أ دوات يليلية مثلل رريطلة  واركاريله  حسب

   جساػد ػلى ثصنيف السلوك المجاور للنتاط الحرجة

لكللود   [65]ال ساس ية فتتمثلل في دراسلة وثفسلل النخلاو اللواردة في المتلال  المشاركة أ ما 

ػلادة دليااة البراهلل النظريلة ابادلة  وجلود امورات الحديلة اعذريلة، ملع فاديا  ، ح ث قملت باإ

ثرائها  .تهدف اإلى ثؼزاز الفهم   ثطبيت ة ورسومات ثوضيحية   أ مثلة  ثبس يطها واإ

 

أ هظمة ثفاضلية متؼددة الحدود مس خوية، حتل اتجاه، للول دوريلة، ططل    : المفتاح ة الكلمات

  ازن، التا لية للخكامل، امورات الحدية ال سرية، مؼادلة  لهو ، مؼادلة راكا الطور، هتاط الخو 
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Introduction

Dynamical systems provide a fundamental mathematical framework for understanding
and interpreting the evolution of various phenomena over time in fields such as biology,
physics, engineering, and economics. Since the advent of differential equations, these
systems have attracted significant interest from mathematicians aiming to study both
their qualitative and quantitative behavior [13,28,42]. Given that most real world models
are nonlinear, finding exact analytical solutions is often impossible. For this reason, nu-
merical methods have become indispensable tools for approximating solutions. However,
such methods usually yield information about the system’s behavior over limited time
intervals, without fully revealing its global dynamics.in the late 19th century, the French
mathematician Henri Poincaré revolutionized this field with his seminal work Memoir on
Curves Defined by a Differential Equation [40, 41], introducing a qualitative approach
based on geometric and topological ideas. This allowed for the study of solution behavior
without requiring explicit formulas. Foundational concepts such as phase portraits and
return maps contributed to the establishment of modern qualitative theory in dynamical
systems.

Among the central challenges in this field are the questions of integrability and the
existence of periodic solutions particularly those known as limit cycles, which are closed
and isolated trajectories. poincaré was the first to address this concept in his fundamental
works [40]. Since then, many models in applied sciences have been formulated as planar
differential systems that exhibit limit cycles [9, 12]. although some first-order differential
equations, such as Bernoulli and Riccati equations, may appear structurally simple, the
existence of relative limit cycles within these systems remains an unresolved issue which
is known in the literature as an open problem in the context of qualitative analysis [44].

This thesis aims to study specific classes of planar differential equations and ana-
lyze their qualitative behavior, with a particular focus on the existence of limit cycles,
whether algebraic, relative, or non-algebraic, various tools will be employed in this con-
text, including first integrals, and algebraic curve analysis. the study is structured in
three main chapters.
Chapter 1, introduces the fundamental concepts and tools used to investigate planar dif-
ferential systems, such as direction fields, solutions, periodic orbits, phase portraits, and
the classification of critical points, as well as important notions like invariant algebraic
curves, first integrals, Darboux integrability, and integrating factors.
Chapter 2, focuses on the general theory of limit cycles, including their existence and
stability, and presents the concept of Poincaré maps as a central analytical tool, with an
emphasis on hyperstable limit cycles.
Chapter 3, constitutes the original contribution of this thesis, where we study two classes
of first-order differential equations Bernoulli and Riccati. We prove the existence of an
upper bound for the number of relative limit cycles and provide explicit examples that
achieve this bound.
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1 Preliminary concepts

In this chapter, we introduce the fundamental notions and tools used in the qualitative
study of planar differential systems, these preliminary concepts include the structure
and behavior of vector fields, the nature of solutions and phase portraits, as well as the
classification and stability of equilibrium points, we also explore invariant curves and
conditions for integrability, which are essential in analyzing the existence and behavior of
periodic solutions and limit cycles.

1.1 Planar polynomial differential systems

Definition 1.1. [32] A planar polynomial differential system is defined by two differential
equations of the form {

ẋ = P (x(t), y(t)),

ẏ = Q(x(t), y(t)),
(1.1)

where P (x(t), y(t)) and Q(x(t), y(t)) are polynomial functions of the variables x and y.
The system (1.1) is of degree n where n = max(deg(P ), deg(Q)).
As usual the dot denotes derivative with respect to the independent variable t.

Definition 1.2. [42] A differential system is given by

dx

dt
= f(t, x),

where x ∈ Rn and f : R× Rn → Rn. If the function f does not depend explicitly on the
time variable t (that is, f(t, x) = f(x)), the system is called autonomous and can be
written as

ẋ = f(x).

Otherwise, if f depends explicitly on t, the system is referred to as non-autonomous.

Definition 1.3. [39] A polynomial differential system in the plane is called homogenous
of degree n if it can be written in the form

ẋ = P (x(t), y(t)) =

i+j=n∑
i+j=0

αij x
iyn−j,

ẏ = Q(x(t), y(t)) =

i+j=n∑
i+j=0

βij x
iyn−j.
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Example 1.1. Consider the following planar differential system:{
ẋ = x2 + y + 1,

ẏ = xy + 2.

This system is non-homogeneous because the right-hand sides contain terms of different
degrees (for instance, x2 is degree 2, y is degree 1, and 1 and 2 are constants of degree 0).

1.2 Vector field

Drawing the vector field before beginning a deep analysis of a differential system is
quite practical and can give us important information about the many types of potential
solutions. It is the vector that corresponds to each point in the space shown graphically.
This vector will really be tangent to the differential system’s trajectory as it passes through
that location, as a result, we may get a reasonably accurate sense of the potential solutions
and their asymptotic behavior from the vector field.

Definition 1.4. [15] Let ∆ be an open set in R2 such that at every point A ∈ ∆, there
exists a vector defined as dA⃗

dt
. There is a mapping

X : ∆ ⊂ R2 → R2, A(x, y) 7→ dA⃗

dt
=

(
P (x, y)
Q(x, y)

)
,

where P (x, y) and Q(x, y) are functions of class C1 on ∆.
The vector field X associated with the system (1.1) is denoted by

X =

(
P
Q

)
.

This vector field can also be represented by the following first-order differential oper-
ator:

X ≡ P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
,

which acts on differentiable scalar function.

Remark 1.1. 1. We Assume That the functions P and Q are of class C1. This assump-
tion ensures that the Cauchy–Lipschitz conditions are satisfied for the system (1.1),
so that for every initial condition (x0, y0), there exists a unique solution.

2. The plane formed by the variables x and y is called the phase plane.

3. On the curve P (x, y) = 0, known as the vertical isocline, the vector field is parallel
to the y-axis, whereas on the curve Q(x, y) = 0, called the horizontal isocline, the
vector field is parallel to the x-axis.

Example 1.2. Consider the system (1.2) of differential equations{
ẋ = −y + 2,

ẏ = x+ 3y.
(1.2)

11



Rewrite the system in matrix A form as,

d

dt

(
x
y

)
=

(
0 −1
1 3

)(
x
y

)
+

(
2
0

)
,

,
find the eigenvalues of the coefficient matrix by solving,

det

(
−λ −1
1 3− λ

)
= λ2 − 3λ+ 1 = 0,

the eigenvalues are ,

λ =
3±

√
5

2
,

next, find a particular solution by solving,

AXp = −
(
2
0

)
,

which yields,

Xp =

(
−6
2

)
,

the general solution is a linear combination of the homogeneous solutions plus the
particular solution:

X(t) = c1e
λ1tv1 + c2e

λ2tv2 +Xp.

Where v1 and v2 are the eigenvectors corresponding to λ1 and λ2, respectively.

Figure 1.1: Vector field of system (1.2).
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1.3 Solution and periodic solution

The basic terms solution and periodic solution in differential systems are clearly defined
as follows: a solution is any function that satisfies the system’s equations for given initial
conditions, while a periodic solution is a function that repeats its values after a fixed
period of time.

Definition 1.5. [39] A mapping φ : I ⊆ R → R2 given by φ(t) = (x(t), y(t)) is called a
solution of system (1.1) if

φ̇(t) = X (φ(t)), ∀t ∈ I,

where X = (P,Q) is the associated vector field. if φ1(t) = (x1(t), y1(t)) and φ2(t) =
(x2(t), y2(t)) are two solutions on I1 and I2 respectively, we say that φ2(t) is an extension
of φ1(t) if I1 ⊂ I2 and φ1(t) = φ2(t) for all t ∈ I1. A solution is called maximal if it has
no further extension.

Definition 1.6. [39] A solution φ(t) = (x(t), y(t)) of system (1.1) is called a periodic
solution if there exists a real number T > 0 such that

φ(t+ T ) = φ(t), ∀t ∈ R.

The smallest such T is called the period of the solution.

1.4 Phase portrait

The solutions of a vector field X are represented as trajectories or orbits that illustrate
how the system evolves over time. The collection of these trajectories is known as the
phase portrait, which provides valuable insight into the qualitative behavior of the system,
such as identifying equilibrium points and analyzing stability properties. The plane R2

is commonly referred to as the phase plane, where the behavior of dynamical systems is
visually represented.

Definition 1.7. [39] Let p ∈ ∆ be a point in the domain of the vector field X : ∆ → R2.
The orbit of X through p, denoted by γp, is defined as the image of the maximal solution
φp : Ip → ∆ that passes through p. In other words,

γp = {φp(t) | t ∈ Ip}.

Definition 1.8. [15] The phase portrait of a vector field X is the complete set of orbits
that represent the solutions of the system in the (x, y)-plane. It provides a global view of
the system’s dynamics by displaying all trajectories (orbits) and equilibrium points.

Example 1.3 (Saddle Point). Consider the system{
ẋ = x,

ẏ = −y.
(1.3)

This is a linear system with a saddle at the origin.

13



Figure 1.2: Phase portrait of a saddle point.

Example 1.4 (Stable Focus). Consider the system{
ẋ = −x− y,

ẏ = x− y.
(1.4)

This system has a stable focus at the origin.

Figure 1.3: Phase portrait of a stable focus.
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Example 1.5 (Center). Consider the system{
ẋ = y,

ẏ = −x.
(1.5)

This is a linear center with closed orbits around the origin

Figure 1.4: Phase portrait of a center equilibrium point.

Example 1.6 (Limit Cycle (Van der Pol Model)). Consider the Van der Pol oscillator{
ẋ = y,

ẏ = −x+ y(1− x2).
(1.6)

This system (1.6) exhibits a stable limit cycle.

15



Figure 1.5: Phase portrait showing a limit cycle (Van der Pol oscillator).

Example 1.7 (Improper Node). Consider the system{
ẋ = 2x+ y,

ẏ = −x+ 4y.
(1.7)

This linear system has an improper node at the origin

Figure 1.6: Phase portrait of an improper node.
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1.5 Equilibrium points

Analyzing dynamical systems, equilibrium points are essential. when describing a dy-
namical system with multiple variables, Henri Poincaré (1854− 1912) demonstrated that
it is sufficient to characterize the system without computing exact solutions. Determining
the equilibrium points and evaluating their stability significantly simplifies the study of
nonlinear systems near these points.

Definition 1.9. [39] A point (x0, y0) is called an equilibrium point ( singular point) of
the system (1.1) if {

P (x0, y0) = 0,

Q(x0, y0) = 0.

Remark 1.2. The concept of an equilibrium point is equivalent to that of a singular point
in a vector field. We use the term singular point when referring to the vector field itself,
while equilibrium point is used when focusing on the system’s trajectories.

Remark 1.3. Equilibrium points occur at the intersections of the horizontal isocline (where
ẏ = 0) and the vertical isocline (where (ẋ = 0).

Proposition 1.1. [39] Every nontrivial periodic orbit (i.e., limit cycle) of a planar dif-
ferential system surrounds at least one equilibrium point.

Example 1.8. Consider the following system:

ẋ = x(1− y), ẏ = y(x− 2).

To find the equilibrium points, we solve the system:

x(1− y) = 0, y(x− 2) = 0.

From the first equation, we get:

x = 0 or y = 1.

From the second equation, we get:

y = 0 or x = 2.

Now, considering the common solutions to both equations, we obtain:

• If x = 0 and y = 0, then this is an equilibrium point.

• If x = 2 and y = 1, then this is also an equilibrium point.

Other combinations, such as x = 0, y = 1 or x = 2, y = 0, do not satisfy both equations
simultaneously.

Therefore, the equilibrium points of the system are:

(0, 0), (2, 1).
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Figure 1.7: Phase portrait of system (1.8).

1.5.1 The Jacobian Matrix and Linearization

In order to analyze the behavior of trajectories near equilibrium points, it is common
practice to consider the linearization of system (1.1) and then relate the trajectories of
the nonlinear system to those of its linear counterpart.

Definition 1.10. [39] Let J(x0, y0) be the Jacobian matrix of the vector field near an
equilibrium point (x0, y0), which is defined as

J(x0, y0) =

∂P
∂x
(x0, y0)

∂P
∂y
(x0, y0)

∂Q
∂x
(x0, y0)

∂Q
∂y
(x0, y0)

 .

Then, the linearized form of system (1.1) near the equilibrium point (x0, y0) is given
in matrix form by (

ẋ
ẏ

)
= J(x0, y0)

(
x
y

)
. (1.8)

Definition 1.11. [39] A singular point (x0, y0) is defined as hyperbolic if the Jacobian
matrix J(x0, y0) has eigenvalues with non-zero real parts. Conversely, if at least one
eigenvalue has a zero real part, the point is classified as non-hyperbolic.

Example 1.9. Consider the following nonlinear system{
ẋ = 2x2 + 2y,

ẏ = 3xy − 3.
(1.10)

To find the equilibrium points, we solve the system,{
2x2 + 2y = 0,

3xy − 3 = 0.
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Divide the first equation by 2 ,

x2 + y = 0 ⇒ y = −x2,

from the second equation,

3xy = 3 ⇒ xy = 1,

substitute y = −x2 into xy = 1

x(−x2) = −x3 = 1 ⇒ x = −1, y = −1,

hence, the system has a unique equilibrium point at,

(x0, y0) = (−1,−1).

Now, we compute the Jacobian matrix. Let

P (x, y) = 2x2 + 2y, Q(x, y) = 3xy − 3,

the Jacobian matrix is:

J(x, y) =

[
∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

]
=

[
4x 2
3y 3x

]
,

evaluating the Jacobian at the equilibrium point (x0, y0) = (−1,−1), we obtain:

J(−1,−1) =

[
−4 2
−3 −3

]
,

therefore, the linearization of system (1.4) at the point (−1,−1) is:{
ẋ = −4x+ 2y,

ẏ = −3x− 3y.
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(a) For the Phase Portrait Plot of sys-
tem(1.4)

(b) For the Solution Trajectories Plot of system (1.4)

Figure 1.8: Plot of system (1.4).

1.5.2 Classification of equilibrium points

Definition 1.12. [39] Consider the differential system (1.1) and let J(x0, y0) be the
Jacobian matrix associated with it at the equilibrium point (x0, y0). Let λ1 and λ2 be
the eigenvalues of this matrix. The classification of equilibrium points is based on the
following cases:

• Node: If λ1 and λ2 are real and have the same sign

• If λ1 ≤ λ2 < 0, the origin is a stable node.

• If λ1 ≥ λ2 > 0, the origin is an unstable node.

• Saddle:

If λ1 and λ2 are real, nonzero, and of opposite signs, the origin is a saddle. A saddle
is always unstable.

• Focus: If λ1 and λ2 are complex conjugates with Re(λ1,2) ̸= 0

• If Re(λ1,2) < 0, the origin is a stable focus.

• If Re(λ1,2) > 0, the origin is an unstable focus.
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• Center : If λ1 and λ2 are purely imaginary, the origin is a center. A center is stable
but not asymptotically stable.

1.5.3 Hartman-Grobman Theorem

This theorem states that a dynamical system (1.1) near a hyperbolic singular point can
be reduced to the study of a topologically equivalent linear system (1.8) near the origin.
This theorem is a powerful tool in the analysis of dynamical systems, as it allows for the
simplification of complex dynamics by examining a simpler linear model. It is particularly
useful for understanding the local behavior of dynamical systems defined on an open subset
of the plane.

Theorem 1.1. [28] Suppose that the Jacobian matrix at the equilibrium point (x0, y0)
has two eigenvalues such that Re(λ1) ̸= 0 and Re(λ2) ̸= 0. Then, the solutions of the
nonlinear system (1.1) can be approximated by the solutions of the linearized system (1.8)
in a neighborhood of the equilibrium point.

In other words, the phase portrait of the linearized system (1.8) provides a good ap-
proximation of that of the nonlinear system (1.1) near this equilibrium point through a
continuous transformation.

Remark 1.4. [39] In the case where Re(λ1) = 0 and Re(λ2) = 0, the linearization method
does not provide sufficient information about the behavior of the nonlinear system. Specif-
ically, if the equilibrium point (x0, y0) is a center for the linearized system (1.8), determin-
ing whether it remains a center or becomes a focus in the nonlinear system (1.1) requires
further investigation. This is known as the center problem.

1.5.4 Topological Equivalence

Definition 1.13. [37] A function h : R2 → R2 is called a homeomorphism if it is a
continuous bijection with a continuous inverse.

Definition 1.14. [1] Two autonomous systems in the plane

(S1):

{
ẋ = P1(x(t), y(t)),

ẏ = Q1(x(t), y(t)).
(S2):

{
ẋ = P2(x(t), y(t)),

ẏ = Q2(x(t), y(t)).

Defined on two open sets V and W respectively, are said to be topologically equivalent if
there exists a homeomorphism h : V → W such that h maps the orbits of (S1) onto the
orbits of (S2) and preserves the direction of motion.

Remark 1.5. [28] Topological equivalence via a homeomorphism allows for a classification
primarily based on the stability or instability of the equilibrium. Two linear systems are
topologically equivalent if they have the same number of eigenvalues, with real parts of
the same signs.
Remark 1.6. Consider the differential system (1.1), and let J(x0, y0) be the Jacobian
matrix associated with this system at the equilibrium point (x0, y0). Let λ1 and λ2 be the
eigenvalues of this matrix.

1. A singular point is said to be elementary if at least one eigenvalue of J(x0, y0)
is nonzero. If both eigenvalues vanish (λ1 = λ2 = 0), the point is called non-
elementary. In this case:
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• The singular point is referred to as degenerate if the linear part is identically
zero (J(x0, y0) = 0).

• If the linear part is nonzero, the singular point is called nilpotent (see [15],
Theorem 3.5).

2. A singular point is said to be semi-hyperbolic if exactly one of its eigenvalues is zero
while the other is nonzero. The phase portraits of such points are well known (see
[15], Theorem 2.19).

3. A singular point (x0, y0) is called a center if there exists a neighborhood V around it
such that for every point p ∈ V (with P 2(p)+Q2(p) ̸= 0), the orbits passing through
p are closed and surround (x0, y0), indicating closed orbits and periodic dynamics.

1.5.5 Stability of the equilibrium

There may be more than one equilibrium point in a nonlinear system, and these points
may be unstable or stable. Ensuring the stability of an equilibrium point is crucial in
various situations. The following is a definition of stability

Let (x0, y0) be an equilibrium point of system (1.1).
We denote X(t) = (P (x, y), Q(x, y)) end X0 = (P (x0, y0), Q(x0, y0)).

Definition 1.15. [28] We say that

1. (x0, y0) is stable if and only if

∀ε > 0,∃η > 0 such that ∥(x, y)− (x0, y0)∥ < η ⇒ ∀t > 0, ∥X(t)−X0∥ < ε.

2. (x0, y0) is asymptotically stable if and only if it is stable and

lim
t→∞

∥X(t)−X0∥ = 0.

Example 1.10. Consider the following system{
ẋ = 8x− 2y + x2 + y2,

ẏ = −2x+ 2y − xy.
(1.9)

The Jacobian matrix of system (1.10) is defined as,

J(x, y) =

(
8 + 2x −2 + 2y
−2− y 2− x

)
,

at the equilibrium point (x0, y0) = (0, 0), the Jacobian becomes,

J(0, 0) =

(
8 −2
−2 2

)
,

by solving det(J(0, 0)− λI) = 0, we obtain the characteristic equation,

λ2 − 10λ+ 12 = 0,

thus, the eigenvalues are:

λ1 = 5 +
√
13, λ2 = 5−

√
13,

since both eigenvalues are real and positive, the origin is classified as an unstable node
(source).
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.

Figure 1.9: Phase portrait of the system (1.10).

Example 1.11. Consider the following nonlinear differential system ẋ =
1

2
x+ 4y + x2 + y2,

ẏ = 6x+ 2y − 3xy.
(1.10)

The Jacobian matrix of system (1.10) is defined as,

J(x, y) =

(
1
2
+ 2x 4 + 2y

6− 3y 2− 3x

)
,

at the equilibrium point (x0, y0) = (0, 0), the Jacobian becomes,

J(0, 0) =

(
1
2

4
6 2

)
,

we compute the eigenvalues by solving the characteristic equation,

det(J − λI) =

∣∣∣∣12 − λ 4
6 2− λ

∣∣∣∣ = (
1

2
− λ

)
(2− λ)− 24,

expanding the determinant,(
1

2
− λ

)
(2− λ) = λ2 − 5

2
λ+ 1,

thus, the characteristic equation is:

λ2 − 5

2
λ− 23 = 0,
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multiplying through by 2 to eliminate the fraction,

2λ2 − 5λ− 46 = 0,

using the quadratic formula,

λ =
5±

√
393

4
,

so the eigenvalues are :

λ1 =
5 +

√
393

4
, λ2 =

5−
√
393

4
.

Since one eigenvalue is positive and the other is negative, the origin is a saddle point,
and therefore unstable.

Figure 1.10: Phase portraits of system (1.11).

Example 1.12. Consider the following nonlinear differential system{
ẋ = −3x+ y − x2,

ẏ = −2x− 2y.
(1.11)

we define the Jacobian matrix of the system (1.11) as,

J(x, y) =

(
−3− 2x 1

−2 −2

)
.

At the equilibrium point (x0, y0) = (0, 0), the Jacobian becomes,

J(0, 0) =

(
−3 1
−2 −2

)
,
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by solving det(J(0, 0)− λI) = 0, we obtain the characteristic equation,

λ2 + 5λ+ 8 = 0,

thus, the eigenvalues are:

λ1,2 =
−5±

√
−7

2
=

−5

2
±

√
7

2
i,

since the eigenvalues have negative real parts and non-zero imaginary parts, the origin
is classified as a stable spiral point (asymptotically stable focus).

Figure 1.11: Phase portrait of the system (1.12).

1.6 Invariant curves

Invariant algebraic curves are a fundamental tool in studying the integrability of planar
polynomial differential systems, as they are used to identify the existence of periodic
solutions and limit cycles.

Definition 1.16. [15] We call an invariant curve of the system (1.1) any curve defined by
the equation U(x, y) = 0 in the phase plane for which there exists a function K = K(x, y),
called the cofactor of the invariant curve U = 0, such that:

P (x, y)
∂U(x, y)

∂x
+Q(x, y)

∂U(x, y)

∂y
= K(x, y)U(x, y). (1.12)

Equality (1.12) shows that on the invariant curve, the gradient
(

∂U
∂x
, ∂U
∂y

)
of U is

orthogonal to the vector field X = (P,Q). This means that at every point on the invariant
curve, the vector field is tangent to the curve, and consequently, the curve is formed by
the solutions (or trajectories) of the vector field X .
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Example 1.13. Consider the nonlinear system{
ẋ = x(2− y),

ẏ = y(x− 2).
(1.13)

Assume that U(x, y) = xy is an invariant curve for the system(1.14)

∂U

∂x
ẋ+

∂U

∂y
ẏ = y · x(2− y) + x · y(x− 2)

= xy
[
(2− y) + (x− 2)

]
= xy(x− y).

Thus, the curve xy = 0 is an invariant curve for the system, with the associated
function

K(x, y) = x− y.

Definition 1.17. [21] An invariant curve U(x, y) = 0 is called algebraic of degree m if
U(x, y) is a polynomial of degree m. Otherwise, it is called non-algebraic.

Definition 1.18. [21] An algebraic curve U(x, y) = 0 is said to be irreducible if U(x, y) is
a polynomial that cannot be factored into polynomials of lower degrees in the ring R[x, y].

Remark 1.7. [15] When the cofactor k(x, y) is a polynomial, the invariant curve defined
by U(x, y) = 0 is said to have a polynomial cofactor. This allows us to apply algebraic
techniques specific to polynomials in its analysis.

Theorem 1.2. [20] Consider the system (1.1) and let Γ(t) be a periodic orbit with period
T > 0. Suppose that U : ∆ ⊂ R2 → R is an invariant curve such that:

Γ(t) = {(x, y) ∈ ∆ | U(x, y) = 0},

and let K(x, y) ∈ C1 be the cofactor associated with the invariant curve U(x, y) = 0 as
given in equation (1.12) . If there exists a point p ∈ ∆ such that U(p) = 0 and ∇U(p) ̸= 0,
then the following holds: ∫ T

0

div(Γ(t))dt =
∫ T

0

K(Γ(t))dt.

Remark 1.8. The condition ∇U(p) ̸= 0 ensures that the invariant curve U(x, y) = 0 does
not contain singular points, meaning that the periodic orbit does not pass through critical
points of the system.

1.7 Integrability of polynomial differential systems

In the qualitative analysis of polynomial differential systems, the concept of integra-
bility plays a fundamental role. A polynomial differential system is said to be integrable
if it admits a first integral, as defined below. However, determining a first integral for a
given differential system is often a challenging task. The significance of the existence of
a first integral lies in the fact that it completely characterizes the phase portrait of the
system, providing a comprehensive understanding of its global dynamics.
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1.7.1 First integral

Definition 1.19. [15] Let H : ∆ → R be a C1 function that is not locally constant. We
say that H is a first integral of the differential system (1.1) in ∆ if it remains constant
along every trajectory of the system that is contained in ∆. In other words, H is a first
integral if

dH(x, y)

dt
= P (x, y)

∂H(x, y)

∂x
+Q(x, y)

∂H(x, y)

∂y
≡ 0.

The general solution of this equation is given by H(x, y) = k, where k is an arbitrary
constant. Therefore, the system (1.1) is said to be integrable in ∆ if it possesses a first
integral H in ∆.

Example 1.14. we start with the given system
dx

dt
= 2xy,

dy

dt
= y2 − x2.

(1.14)

The condition for a first integral H(x, y) is :

dH

dt
=

∂H

∂x
(2xy) +

∂H

∂y
(y2 − x2) = 0,

assuming a polynomial form for H

H(x, y) = ax2 + by2 + cx3 + dxy2,

computing the partial derivatives,

∂H

∂x
= 2ax+ 3cx2 + dy2,

∂H

∂y
= 2by + 2dxy,

substituting into the condition,

(2ax+ 3cx2 + dy2)(2xy) + (2by + 2dxy)(y2 − x2) = 0,

expanding and simplifying,

4ax2y + 6cx3y + 2dxy3 + 2by3 + 2dxy3 − 2bx2y − 2dx3y = 0,

grouping like terms,

(4a− 2b)x2y + (6c− 2d)x3y + (4d+ 2b)xy3 = 0,

setting each coefficient to zero yields the system,

4a− 2b = 0, 6c− 2d = 0, 2b+ 4d = 0,

solving this system,

b = 2a, d = −a, c = −3a,
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taking a = 1, the first integral becomes,

H(x, y) = x2 + 2y2 − 3x3 − xy2.

Verification shows this satisfies dH
dt

= 0
a simpler equivalent form is:

H(x, y) = x2 + y2 − 3

2
x3,

which also satisfies the conservation condition,

(2x− 3x2)(2xy) + (2y)(y2 − x2) = 0.

This first integral represents a conserved quantity that remains constant along the
solution trajectories of the system. It provides crucial insight into the system’s dynamics
without requiring the full solution of the differential equations. The existence of such an
integral facilitates analysis of the solution behavior and stability properties.

1.7.2 Darboux integrability

Definition 1.20. [36] A Darboux function is a function of the form

f(x, y) = f1(x, y)
λ1f2(x, y)

λ2 . . . fp(x, y)
λp exp

(
g(x, y)

h(x, y)

)
,

where fi(x, y) for i = 1, . . . , p, g(x, y), and h(x, y) are polynomials in C[x, y] and the λi

for i = 1, . . . , p are complex numbers.

Definition 1.21. System (1.1) is called Darboux integrable if it has a first integral which
is a Darboux function.

Definition 1.22. [16] A function that can be represented by quadratures of elementary
functions is known as a Liouvillian function.

Determining whether a given class of functions has an integrating factor or an inverse
integrating factor is another aspect of studying the integrability problem.

1.7.3 Integrating factors

Definition 1.23. [39] On the open subset ∆ ⊆ R2, the function R(x, y) is an integrating
factor of differential system (1.1).

div(RP,RQ) = 0 or P
∂R

∂x
+Q

∂R

∂y
= −R div(P,Q),

if R ∈ C1(U), R ̸= 0 on U and

∂(RP )

∂x
= −∂(RQ)

∂y
.

As is customary,
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div(X) = div(P,Q) =
∂P

∂x
+

∂Q

∂y
,

defines the divergence of the vector field X.
It is evident that the function H that satisfies

∂H

∂x
= RQ,

∂H

∂y
= −RP,

is a first integral, then the first integral H associated to the integrating factor R is
given by

H(x, y) = −
∫

R(x, y)P (x, y) dy + h(x),

H(x, y) =

∫
R(x, y)Q(x, y) dx+ h(y).

Inverse integrating factor

Definition 1.24. [23] If a nonzero function V : ∆ → R of class C1(∆) satisfies the
following linear partial differential equation and is not locally null:

Q
∂V

∂y
+ P

∂V

∂x
= V

(
∂P

∂x
+

∂Q

∂y

)
,

then V is called an inverse integrating factor of system (1.1).
It is simple to confirm that an integrating factor in ∆ \ {V = 0} of the system is

defined by the function:

R =
1

V
.
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2 Limit Cycles in Differential Systems

2.1 Introduction

Limit cycles are isolated periodic solutions of planar nonlinear differential systems. They
correspond to closed trajectories in the phase plane, which nearby trajectories may either
approach or diverge from over time. The concept was first introduced by Henri Poincaré
in his 1882 memoir "Sur les courbes définies par une équation différentielle", where he
explored the qualitative behavior of differential equations [40]. Limit cycles are essential
in describing self-sustained oscillations, such as those observed in chemical reactions,
biological rhythms, and electronic circuits. These oscillations arise naturally from the
internal dynamics of the system, without the need for any external periodic forcing. This
chapter outlines the mathematical theory of limit cycles.

Definition 2.1. [31] A limit cycle is it the solution of the system is any periodic orbit
that is isolated from the set of all periodic orbits of the system.

An isolated periodic orbit means that nearby trajectories are not closed, instead, they
spiral around the limit cycle, either moving away from it or approaching it.

Definition 2.2. [31]
The periodic solution of system (1.1) is called an algebraic limit cycle if it is a limit

cycle and contained within an irreducible algebraic invariant curve U(x, y) = 0 of system
(1.1). Otherwise, it is referred to as a non-algebraic limit cycle.

Example 2.1. In [40] of his foundational work, Henri Poincaré presented the first known
example of a limit cycle. the studied system is a planar polynomial differential system of
degree three {

ẋ = x(x2 + y2 − 1)− y(x2 + y2 + 1),

ẏ = y(x2 + y2 − 1) + x(x2 + y2 + 1).
(2.1)

This system has a unique singular point at the origin, which is a focus. There are no
singular points on the circle x2 + y2 = 1, which acts as a characteristic trajectory and
therefore constitutes an isolated limit cycle. Hence, the unit circle

x2 + y2 = 1,

is the only limit cycle in the system, as observed by Poincaré.
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Figure 2.1: [31]First algebraic limit cycle from Poincaré’s example,for the system (2.1).

Example 2.2. Consider the planar polynomial differential system{
ẋ = y + x(3− x2 − y2),

ẏ = −x+ y(1− 2x2 − 5y2).

This system has a unique singular point at the origin (0, 0).
To analyze the behavior near the origin and possible limit cycles, observe the following
at the origin, the linearized system is:

ẋ = y + 3x, ẏ = −x+ y,

the nonlinear terms include cubic polynomials in x and y.
Consider the circle:

x2 + y2 = r2,

for some r > 0 to check if a limit cycle exists near a certain radius, examine the radial
component of the vector field. Multiply the system by the vector (x, y),

xẋ+ yẏ = x
[
y + x(3− x2 − y2)

]
+ y

[
−x+ y(1− 2x2 − 5y2)

]
,

simplify the expression,

xẋ+ yẏ = xy + 3x2 − x4 − x2y2 − xy + y2 − 2x2y2 − 5y4

= 3x2 + y2 − x4 − 3x2y2 − 5y4,

rewrite in terms of r2 = x2 + y2, this expression gives the rate of change of r2.
If this quantity changes sign at some radius r, it indicates the possible presence of a

limit cycle.
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2.2 Existence and non existence of limit cycles in the
plane

Theorem 2.1. [12] If system (1.1) has no singular points, then it does not have any limit
cycles.

Theorem 2.2. [23] Let (P,Q) be a C1 vector field defined in the open subset ∆ ⊂ R2,
(u(t), v(t)) a periodic solution of period T of the system (1.1), and R : ∆ → R a C1 map
such that ∫ T

0

R(u(t), v(t)) dt ̸= 0,

and let U = U(x, y) be a C1 solution of the linear partial differential equation (1.12).
Then the closed trajectory

γ = {(u(t), v(t)) ∈ ∆ : t ∈ [0, T ]},

is contained in the set

Σ = {(x, y) ∈ ∆ : U(x, y) = 0},

and γ is not contained in a periodic annulus of the vector field (P,Q). Moreover, if
the vector field (P,Q) and the functions R and U is analytic, then γ is a limit cycle.

Theorem 2.3. [23] Let (P,Q) be a C1 vector field defined on a non-empty open set
Ω ⊂ R2. Let V = u(x, y) be a C1 solution of the partial differential equation

P (x, y)
∂V

∂x
(x, y) +Q(x, y)

∂V

∂y
(x, y) =

(
∂P

∂x
(x, y) +

∂Q

∂y
(x, y)

)
V (x, y).

If Γ is a limit cycle of system (1.1), then Γ is contained in

Σ = {(x, y) ∈ Ω : V (x, y) = 0}.

Theorem 2.4. [31] Let Ω be a connected domain in R2. If

∂P

∂x
(x, y) +

∂Q

∂y
(x, y),

does not vanish or keeps a constant sign on Ω, then the differential system admits no limit
cycle entirely contained in Ω.

2.2.1 Stability of limit cycles

Let γ denote the trajectory corresponding to the limit cycle of system (1.1). Although
the neighboring trajectories are not closed, they tend to follow a similar path to γ. The
nature of γ as a limit cycle whether it is stable, semi-stable, or unstable is determined
by the behavior of these nearby trajectories: they may spiral inward toward γ, spiral
outward away from it, or do both. This distinction classifies the limit cycle based on
whether surrounding trajectories converge to, diverge from, or partially approach and
partially move away from γ.
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Theorem 2.5. [31] Consider a closed trajectory γ representing a limit cycle in a nonlinear
dynamical system. The stability characteristics of γ can be described as follows:

a. Stable (attractive): If all trajectories in the vicinity of γ, both inside and outside,
spiral towards γ as t → +∞.

b. Unstable (repulsive): If all neighboring trajectories spiral towards γ as t → −∞.

c. Semi-Stable: If trajectories inside γ approach it as t → +∞ while those outside
approach it as t → −∞, or vice versa.

Figure 2.2: Stable limit cycle. Figure 2.3: Unstable limit cycle.

Figure 2.4: Semi-stable limit cycle.

Example 2.3. We consider the following planar system{
ẋ = y,

ẏ = −(2− 4x)− (4x− 2)y.
(2.2)

This system exhibits a closed and stable trajectory surrounding an equilibrium point,
indicating the existence of a limit cycle in the dynamical behavior of the solutions. The
accompanying figure shows the phase portrait of the system, where a closed and stable
limit cycle appears surrounding the equilibrium point, confirming the periodic nature of
the solutions in this model:
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Figure 2.5: Phase portrait of system (2.2) .

Example 2.4. on consider its dynamic behavior in the phase plane (x, y), we define the
auxiliary system {

ẋ = y,

ẏ = y − y3 − x.
(2.3)

This system introduces a second dimension by treating y as the velocity of x, and models
the evolution of y with a cubic nonlinearity and a coupling to x. The resulting system
allows for phase portrait analysis and the detection of potential limit cycles or equilib-
rium points.To visualize the dynamics and detect potential closed trajectories, the phase
portrait of the planar system is given below:
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Figure 2.6: phase portrait of the system (2.3).

2.3 Poincaré Map

One of the most fundamental tools for analyzing the stability and bifurcations of periodic
orbits is the Poincaré map (also known as the first return map), introduced by Henri
Poincaré in 1881 [40].

The concept behind the Poincaré map is straightforward: if r is a periodic orbit of
system

ẋ = f(x), (2.4)

passing through a point x0, and E is a hyperplane orthogonal to r at x0, then for any point
x ∈ E sufficiently close to x0, the solution φt(x) of the system at t = 0 will eventually
intersect E again at a point P (x), which lies near x0, see Figure 2.7. The mapping

x 7→ Π(x),

is called the Poincaré map.
This map can also be defined when E is a smooth surface passing through x0 ∈ r,

provided that it is not tangent to the orbit r at x0. In such a case, the surface E is said
to intersect the orbit r transversally at x0.

The following theorem guarantees the existence and continuity of the Poincaré map
Π(x), as well as the existence and continuity of its first derivative DΠ(x).
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Figure 2.7: [40]The Poincare map.

Theorem 2.6. [39] Let ∆ be an open subset of Rn and Let the vector field of system
(1.1). Suppose that φt(X0), is a periodic solution of (1.1) of period T , and that the cycle

γ = {X ∈ Rn | X = φt(X0), 0 ≤ t ≤ T}

, is contained in ∆ .Let Σ be the hyperplane orthogonal to γ at X0, i.e., let

Σ = {X ∈ Rn | (X −X0) · (P (X0), Q(X0)) = 0}.

Then there exists δ > 0 and a unique function τ(X), defined and continuously differen-
tiable for X ∈ Nδ(X0), such that

τ(X0) = T and φt(X) ∈ Σ for all X ∈ Nδ(X0).

Theorem 2.7. [39] Let γ(t) be a periodic solution of (1.1) of period T . Then the derivative
of the Poincaré map Π(s) along a straight line Σ normal to γ = {X ∈ R2 | X =
γ(t)− γ(0) 0 ≤ t ≤ T} at X = (0, 0) is given by∏

= exp

∫ T

0

div · (P (γ(t), Q(γ(t))dt.

Definition 2.3. [39] Let P (s) be the Poincaré map for a cycle r of a planar analytic
system , and let

d(s) = Π(x)− s,

be the displacement function. Then if

d(0) = d′(0) = · · · = d(k−1)(0) = 0 and d(k)(0) ̸= 0,

r is called a multiple limit cycle of multiplicity k. If k = 1, then r is called a simple limit
cycle.

Theorem 2.8 (Poincaré). [39] A planar analytic system cannot have an infinite number
of limit cycles which accumulate on a cycle of system.

For planar analytic systems, it is convenient at this point to discuss the Poincaré map
in the neighborhood of a focus and to define what we mean by a multiple focus. These
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results will prove useful in Chapter 4, where we discuss the bifurcation of limit cycles from
a multiple focus.

Suppose that the planar analytic system has a focus at the origin and that

detDf(0) ̸= 0.

Then system is linearly equivalent to the system{
ẋ = ax− by + p(x, y),

ẏ = bx+ ay + q(x, y).
(2.4)

With b ̸= 0, where the power series expansions of p and q begin with second or higher
degree terms.

In polar coordinates, this system has the form

ṙ = ar +O(r2), θ̇ = b+O(r).

Let r(t, r0, θ0), θ(t, r0, θ0) be the solution of this system satisfying

r(0, r0, θ0) = r0, θ(0, r0, θ0) = θ0.

Then for r0 > 0 sufficiently small and b > 0, θ(t, r0, θ0) is a strictly increasing function
of t. Let t(θ, r0, θ0) be the inverse of this strictly increasing function, and for a fixed θ0,
define the function

Π(r0) = r(t(θ0 + 2π, r0, θ0), r0, θ0).

Then for all sufficiently small r0 > 0, P (r0) is an analytic function of r0, which is called
the Poincaré map for the focus at the origin of system .

Similarly, for b < 0, θ(t, r0, θ0) is a strictly decreasing function of t, and the formula

Π(r0) = r(t(θ0 − 2π, r0, θ0), r0, θ0),

is used to define the Poincaré map for the focus at the origin in this case.

Theorem 2.9. [39] Let Π(s) be the Poincaré map for a focus at the origin of the planar
analytic system with b ̸= 0, and suppose that P (s) is defined for 0 < s < δ0. Then there
exists a δ > 0 such that P (s) can be extended to an analytic function defined for |s| < δ.
Furthermore,

Π(0) = 0, Π ′(0) = exp

(
2πa

|b|

)
,

and if d(s) = P (s)− s, then

d(s)d(−s) < 0 for 0 < |s| < δ.

The fact that d(s)d(−s) < 0 for 0 < |s| < δ can be used to show that if

d(0) = d′(0) = · · · = d(k−1)(0) = 0, d(k)(0) ̸= 0,

then k is odd, i.e., k = 2m + 1. The integer m = k−1
2

is called the multiplicity of the
focus. If m = 0, the focus is called a simple focus, and it follows from the above theorem
that system , with b ̸= 0, has a simple focus at the origin if a ̸= 0.

37



The sign of d′(0), i.e, the sign of a, determines the stability of the origin in this case.
If a < 0, the origin is a stable focus, and if a > 0, the origin is an unstable focus.

If d′(0) = 0, i.e., if a = 0, then system has a multiple focus or center at the origin.
If d′(0) = 0, then the first nonzero derivative

v := d(k)(0) ̸=,

is called the Liapunov number for the focus. If a < 0, then the focus is stable, and if
a > 0, it is unstable.

If d′(0) = d′′(0) = 0 and d′′′(0) ̸= 0, then the Liapunov number for the focus at the
origin of system is given by the formula

a− d′′′(0) =
1

26

{
[3(a30 + b03) + (a12 + b21)]

− [2(a20b20 − a02b02)− a11(a02 + a20) + b11(b02 + b20)]

}
. (2.5)

Here, the functions p(x, y) and q(x, y) from system are expressed as:

p(x, y) =
∑
i+j≥2

aijx
iyj, q(x, y) =

∑
i+j≥2

bijx
iyj.

This information will be useful in this Section, where we shall see that m limit cycles
can be made to bifurcate from a multiple focus of multiplicity m under a suitable small
perturbation of system .

Example 2.5. In this example we consider here a particular case of the general system
, by setting a = −1 and b = 0. The resulting system in Cartesian coordinates becomes

dx

dt
= x(x2 + y2 − 1)2 + (−x+ 2y + xy2 + x3)(−x2 − y2),

dy

dt
= y(x2 + y2 − 1)2 + (−2x− y + x2y + y3)(−x2 − y2).

(2.6)

We convert the system to polar coordinates using x = r cos θ and y = r sin θ
computing the radial derivative dr

dt
,

dr

dt
= x

dx

dt
+ y

dy

dt
= r(r2 − 1)2 − r3(r2 − 1) sin θ cos θ cos 2θ,

computing the angular derivative dθ
dt

,

dθ

dt
=

xdy
dt

− y dx
dt

r2
= −1 + r2(2 cos 2θ − cos 4θ),

to analyze the limit cycle at r = 1, we compute the partial derivative,

∂ṙ

∂r

∣∣∣∣
r=1

= −1− sin θ cos θ cos 2θ.
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Now compute the integral of the partial derivative over the interval [0, 2π],∫ 2π

0

(−1− sin θ cos θ cos 2θ) dθ = −2π,

since the value of the integral is negative (−2π < 0), the limit cycle at r = 1 is stable,
to analyze the stability of the limit cycle more precisely, we compute the second

derivative
∂2ṙ

∂r2

∣∣∣∣
r=1

= 8− 6 sin θ cos θ cos 2θ,

and compute its integral:∫ 2π

0

(8− 6 sin θ cos θ cos 2θ) dθ = 16π,

since the integral is positive (16π > 0), the limit cycle is stable and attracting.
Finally, the angular equation of motion for the system at r = 1 is

dθ

dt
= −1 + (2 cos 2θ − cos 4θ).

(a) Solution trajectories with the limit cycle (b) Phase portrait with the limit cycle

Figure 2.8: Vector field of systeme (2.4).

figure (2.8) illustrates the behavior of the dynamical system for the values a = −1 and
b = 0, where the solution trajectories are shown to be attracted toward the stable limit
cycle at radius r = 1. The plot clearly demonstrates how all trajectories converge toward
the red circle representing the limit cycle, while the complex angular motion around the
cycle exhibits a periodic behavior governed by

dθ

dt
= −1 + (2 cos 2θ − cos 4θ).

This visual representation confirms the analytical results, which showed the stability of
the limit cycle through the analysis of partial derivatives and their integrals.
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3 The Study of Rational Limit Cycles
for Bernoulli and Riccati Equations

3.1 Rational limit cycles on Bernoulli equations

3.1.1 Introduction

Limit cycles are key features in the qualitative theory of planar differential systems, as
they represent isolated periodic behaviors that can be either stable or unstable [15], [39],
[28]. Studying their existence, number, and stability is a central problem in differential
equations, among the nonlinear first-order equations, certain forms including Bernoulli
and Abel equations have attracted attention due to their analytical properties and their
potential to exhibit rational limit cycles [13], [2], [14], [22]. Recent research has established
upper bounds for the number of such cycles, linking them to the equation’s coefficients
and degree of nonlinearity [44], [21], understanding these cycles contributes to a deeper
grasp of nonlinear dynamics in both theoretical frameworks and real-world applications
[42], [27] .

Definition 3.1. A rational limit cycle is an isolated periodic solution of a differential
equation such that the solution is a rational function in x that is a ration of two polyno-
mials and not itself a polynomial function.

3.1.2 The Bernoulli Equation

The Bernoulli equation is a first-order nonlinear differential equation of the form

dy

dx
= A(x)yn +B(x)y,

where A(x) and B(x) are polynomial functions and n ≥ 2 is a positive integer.This
equation can be transformed into a linear differential equation by the substitution z =
y1−n, which greatly facilitates the study of its solutions, including limit cycles.

Theorem 3.1. When n ≥ 3 is odd, there are at most two rational limit cycles of system,
and we provide an example of system with two rational limit cycles. Moreover, when n ≥ 4
is even, there is at most one rational limit cycle of system, and we provide an example of
system with one rational limit cycle.

The proof of Theorem is given in this section.
First, we prove an auxiliary lemma.
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Lemma 3.1. The rational function y = q(x)
p(x)

, with p(x) non-constant, is a periodic solution
of system if and only if

q(x) = c ∈ R \ {0}, p(0) = p(1), and p(x) has no zero in [0, 1],

and
B(x)p(x)n−1 + p(x)n−2p′(x) + cn−1A(x) = 0. (3.1)

We first prove an auxiliary lemma

Proof of Lemma

Assume that y(x) =
c

p(x)
is a periodic solution of the system, where p(x) is a non-

constant, continuous, and non zero function on [0, 1], and satisfies p(0) = p(1).
Define the auxiliary function

g(x, y) = p(x)y − c. (3.2)

Then g(x, y(x)) = 0 for all x ∈ [0, 1] Differentiating this identity with respect to x gives:

d

dx
g(x, y) = p′(x)y + p(x)

dy

dx
= 0,

substituting the differential equation
dy

dx
= A(x)yn +B(x)y into the expression yields:

p′(x)y + p(x)A(x)yn + p(x)B(x)y = 0, (3.3)

since g(x, y) is irreducible and linear in y, we can express the left-hand side of equation
(3.3) as k(x, y)g(x, y), where k(x, y) is a polynomial of degree n− 1 in y. Let

k(x, y) = k0(x) + k1(x)y + · · ·+ kn−1(x)y
n−1,

then
k(x, y)g(x, y) = (k0 + k1y + · · ·+ kn−1y

n−1)(p(x)y − c).

Expanding and matching coefficients of powers of y gives the identities:

Coefficient of y0 : − k0(x)c = 0,

Coefficient of y1 : p′(x) + p(x)B(x) = k0(x)p(x)− k1(x)c,

Coefficient of y2 : 0 = k1(x)p(x)− k2(x)c,

...
Coefficient of yn : p(x)A(x) = kn−1(x)p(x).

From the first equation, we get k0(x) = 0, so c ̸= 0. from the second equation

p′(x) + p(x)B(x) = −k1(x)c ⇒ k1(x) = −p′(x) + p(x)B(x)

c
,

from the recursion

k2(x) =
p(x)

c
k1(x), . . . , kn−1(x) =

p(x)n−2

cn−2
k1(x),
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therefore,

A(x) =
kn−1(x)

p(x)
=

k1(x)

cn−2p(x)n−1
= −p′(x) + p(x)B(x)

cn−1p(x)n−1
,

multiplying both sides by cn−1p(x)n−1, we obtain,

B(x)p(x)n−1 + p′(x)p(x)n−2 + cn−1A(x) = 0,

conversely, assume the identity

B(x)p(x)n−1 + p′(x)p(x)n−2 + cn−1A(x) = 0,

holds for a function p(x) that satisfies p(0) = p(1) and is nonzero on [0, 1].
define y(x) =

c

p(x)
then

dy

dx
= −cp′(x)

p(x)2
,

and the right-hand side of the differential equation becomes

A(x)yn +B(x)y =
cnA(x)

p(x)n
+

cB(x)

p(x)
,

multiply both sides by p(x)2

−cp′(x) = cnA(x)p(x)2−n + cB(x)p(x),

divide by c:
−p′(x) = cn−1A(x)p(x)2−n +B(x)p(x),

multiplying by p(x)n−2 gives

−p′(x)p(x)n−2 = cn−1A(x) +B(x)p(x)n−1,

which is the given identity in reverse.
Hence y(x) =

c

p(x)
is a solution, and since p(0) = p(1), we also have y(0) = y(1), So

the solution is periodic.

3.1.3 Proof of Theorem

Reduction to the case c = 1:
by Lemma 3, it is not restrictive to assume c = 1, and we consider rational limit cycles

of the form:
y =

1

p(x)
or y = p(x),

where p(x) satisfies:

p(0) = p(1), p(x) ̸= 0 on [0, 1], and p(x) satisfies equation (3.1)

can be rewritten as
pn−2(x)p′(x) = −A(x)−B(x)p(x)n−1.

Let u(x) = p(x)n−1 then, differentiating,

u′(x) = (n− 1)p(x)n−2p′(x).
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Substituting into the rewritten equation gives

1

n− 1
u′(x) = −A(x)−B(x)u(x),

or equivalently, multiplying through

u′(x) = −(n− 1)A(x)− (n− 1)B(x)u(x),

which is a linear ODE
suppose u1(x) = p1(x)

n−1 and u2(x) = p2(x)
n−1 are two solutions of the ODE. Then

u′
1(x) = −(n− 1)A(x)− (n− 1)B(x)u1(x),

u′
2(x) = −(n− 1)A(x)− (n− 1)B(x)u2(x).

Subtracting these equation

d

dx
(u1(x)− u2(x)) = −(n− 1)B(x)(u1(x)− u2(x)),

this last general solution

u1(x)− u2(x) = Ce−(n−1)
∫
B(x)dx,

where C is a constant.
Case 1: B(x) ̸≡ 0:
the difference u1(x) − u2(x) is non-constant unless C = 0. However, the boundary

condition p(0) = p(1) implies u(0) = u(1), so

C
(
e−(n−1)

∫ 1
0 B(x)dx − 1

)
= 0,

which implies either C = 0 or
∫ 1

0
B(x)dx = 0. In both cases, C = 0, hence u1(x) = u2(x).

Case 2: B(x) ≡ 0:
then the equation reduces to

u′
1(x) = u′

2(x) ⇒ u1(x) = u2(x) + C,

again, applying u(0) = u(1), we get C = 0, so u1(x) = u2(x).

Implications for p(x)
since u = pn−1, uniqueness of u implies

p1(x)
n−1 = p2(x)

n−1 ⇒ p1(x) = αp2(x),

for some constant α with αn−1 = 1.

43



3.1.4 Example of Application

we consider the following differential equation

y′ = −(x2 − x+ 1)n−2(2x− 1),

we propose that the rational function,

y(x) =
1

x2 − x+ 1
,

is a solution. Let us denote,

p(x) = x2 − x+ 1 so that y(x) =
1

p(x)
,

we compute the derivative,

y′(x) = − p′(x)

p(x)2
= − 2x− 1

(x2 − x+ 1)2
.

The right-hand side of the differential equation is:

−(x2 − x+ 1)n−2(2x− 1),

now multiply y′(x) by p(x)n to match degrees,

y′(x) · p(x)n = −2x− 1

p(x)2
· p(x)n = −(2x− 1) · p(x)n−2,

his matches the right-hand side exactly. Thus, y(x) = 1
x2−x+1

is indeed a solution for
any n ≥ 2.

Now consider whether additional rational solutions of the form:

y(x) =
α

x2 − x+ 1
,

are also solutions. Taking the derivative,

y′(x) = − α(2x− 1)

(x2 − x+ 1)2
,

to match the right-hand side, we must have,

−α · 2x− 1

(x2 − x+ 1)2
= −(x2 − x+ 1)n−2(2x− 1) ⇒ α = (x2 − x+ 1)n−2,

but since α is a constant, this only works if the function is identically constant in x.
Therefore, to find which constants α are allowed, we impose:

αn−1 = 1.

This equation determines how many rational limit cycles exist.
If n ≥ 4 is even, the equation αn−1 = 1 has only one real root α = 1 so there is
exactly one rational limit cycle.

y(x) =
1

x2 − x+ 1
.

If n ≥ 3 is odd, the equation has two real roots α = ±1 hence, there are two rational
limit cycles

y(x) = ± 1

x2 − x+ 1
.
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If n = 4 (even), the differential equation becomes,

y′ = −(x2 − x+ 1)2(2x− 1),

the only rational solution is:

y(x) =
1

x2 − x+ 1
.

If n = 3 (odd), the equation becomes,

y′ = −(x2 − x+ 1)(2x− 1),

then the rational solutions are:

y(x) = ± 1

x2 − x+ 1
.

3.2 Rational limit cycles on Riccati equations

3.2.1 Introduction

A limit cycle is a closed, isolated periodic orbit whose stability determines nearby tra-
jectory behavior. It plays a key role in understanding long-term dynamics of differential
systems across various fields [15], [39], [28], this concept is central to Hilbert’s 16th prob-
lem, which concerns bounding the number of limit cycles in polynomial systems. Riccati
equations, though simple, can exhibit rational limit cycles under certain conditions. The
number of these is influenced by the degree of the polynomial coefficients [44], and their
reducibility to second-order linear equations allows detailed analysis [2], [13].

3.2.2 The Riccati Equation

The Riccati equation is a first-order nonlinear differential equation of the form

dy

dx
= A0(x) + A1(x)y + A2(x)y

2,

where where A0(x), A1(x), and A2(x) are polynomial functions of the independent variable
x.

This equation is significant in the theory of differential equations because, despite its
nonlinear quadratic term, it can often be transformed into a second-order linear differ-
ential equation. This property makes it a valuable tool in both theoretical and applied
contexts. Riccati equations appear frequently in various fields such as control theory,
quantum mechanics, and mathematical biology, where understanding their solutions in-
cluding possible limit cycles is essential [2], [13].

Theorem 3.2. A maximum of one rational limit cycle of system, and we provide an
example of system with one rational limit cycle.
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3.2.3 Proof of Theorem

We analyze the uniqueness of rational limit cycles in the system

y′(x) = A0(x) + A1(x)y(x) + A2(x)y(x)
2.

Assume that y0(x) =
q0(x)

p0(x)
is a rational solution of the system. Define the perturbation

function
w(x) = y(x)− y0(x),

which represents the deviation from the known rational solution y0(x), since y0(x) is a
solution, it satisfies

y′0(x) = A0(x) + A1(x)y0(x) + A2(x)y0(x)
2,

then the derivative of w(x) is given by

w′(x) = y′(x)− y′0(x),

using the system, we write

w′(x) =
(
A0(x) + A1(x)y(x) + A2(x)y(x)

2
)
− y′0(x).

Since y(x) = w(x) + y0(x), we substitute:

w′(x) = A0(x) + A1(x)(w(x) + y0(x)) + A2(x)(w(x) + y0(x))
2 − y′0(x),

expanding the quadratic term,

(w + y0)
2 = w2 + 2wy0 + y20,

we obtain

w′(x) = A0(x)+A1(x)w(x)+A1(x)y0(x)+A2(x)w(x)
2+2A2(x)w(x)y0(x)+A2(x)y0(x)

2−y′0(x).

Using the fact that y0(x) satisfies the system, the terms A0(x)+A1(x)y0(x)+A2(x)y0(x)
2

cancel with y′0(x), and we are left with,

w′(x) = A2(x)w(x)
2 + (A1(x) + 2A2(x)y0(x))w(x).

Define
B(x) = A1(x) + 2A2(x)y0(x),

so the equation becomes

w′(x) = A2(x)w(x)
2 +B(x)w(x),

which is a Riccati-type (or Bernoulli-type) equation. Such an equation has at most one
rational solution. Therefore, the original system can have at most one rational limit cycle.

As an illustrative example, consider the system

y′ = 1 + xy + y2.
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A rational solution is
y0(x) = −1

x
,

define w(x) = y(x) + 1
x
, then

w′(x) = w(x)2 +

(
x− 2

x

)
w(x).

The solution w(x) = 0 corresponds to the limit cycle y(x) = − 1
x
, confirming that it is the

unique rational limit cycle.
In conclusion, by transforming the problem via a change of variable, we reduce it to a

Bernoulli equation, which proves that system can have at most one rational limit cycle.

Lemma 3.2. [44] The rational function w(x) = r(x)
s(x)

, with r(x) non-constant, is a periodic
solution of system (6) if and only if

s(x) = c ∈ R \ {0}, r(0) = r(1), and r(x) has no zero in [0, 1],

and
r′(x) + r(x)B(x) + A2(x)c = 0.

Now we prove an auxiliary lemma

Proof of lemma

We consider the differential equation

w′ = A2(x)w
2 +B(x)w, where B(x) = A1(x) + 2A2(x)y0(x).

Let w(x) = r(x)
s(x)

be a rational function with r(x) non-constant. The function w(x) is a
periodic solution if and only if the following conditions hold,

s(x) = c ∈ R \ {0}, r(0) = r(1), r(x) has no zeros in [0, 1],

and
r′(x) + r(x)B(x) + A2(x)c = 0,

suppose w(x) = s(x)
r(x)

is a periodic solution. Since w(x) is well-defined and periodic on
[0, 1], it follows that r(x) ̸= 0 for all x ∈ [0, 1], define:

g(x,w) = r(x)w − s(x),

the total derivative of g along the solution must vanish, giving:

d

dx
g(x,w) = r′(x)w + r(x)w′ − s′(x) = 0,

substituting w′ = A2(x)w
2 +B(x)w, we obtain:

r′(x)w + r(x)(A2(x)w
2 +B(x)w)− s′(x) = 0.

Since g(x,w) is irreducible, there exists a polynomial k(x,w) = k0(x) + k1(x)w such that

r′(x)w + r(x)(A2(x)w
2 +B(x)w)− s′(x) = k(x,w)(r(x)w − s(x)),
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expanding both sides, we compare coefficients of powers of w. This yields three equations

−s′(x) = −k0(x)s(x),

r′(x) + r(x)B(x) = k0(x)r(x)− k1(x)s(x),

r(x)A2(x) = k1(x)r(x),

from the first equation, s′(x) = k0(x)s(x), which implies s(x) must be a non-zero
constant c, because a non-constant polynomial cannot divide its own derivative. The
third equation gives k1(x) = A2(x). Substituting into the second equation yields

r′(x) + r(x)B(x) = −A2(x)c.

The periodicity condition w(0) = w(1) translates to c
r(0)

= c
r(1)

, hence r(0) = r(1),
conversely, assume s(x) = c ̸= 0, r(0) = r(1), r(x) ̸= 0 on [0, 1], and

r′(x) + r(x)B(x) + A2(x)c = 0,

we verify that w(x) = c
r(x)

satisfies the differential equation. Differentiating,

w′ = −cr′(x)

r2(x)
,

substituting r′(x) = −r(x)B(x)− A2(x)c, we obtain

w′ =
c(r(x)B(x) + A2(x)c)

r2(x)
= A2(x)

(
c

r(x)

)2

+B(x)

(
c

r(x)

)
,

which matches the original equation. The periodicity w(0) = w(1) follows directly from
r(0) = r(1),

the condition r(x) ̸= 0 on [0, 1] ensures w(x) remains finite and smooth. The differen-
tial relation,

r′(x) + r(x)B(x) + A2(x)c = 0,

enforces consistency between r(x) and the coefficients A2(x), B(x). The requirement
s(x) = c ensures w(x) is a non-degenerate rational function. The periodicity is encoded
in r(0) = r(1), guaranteeing w(0) = w(1).

The lemma establishes a precise correspondence between periodic rational solutions
w(x) = c

r(x)
and the Riccati equation through three fundamental constraints.

Simplicity: the denominator must be constant (s(x) ≡ c ̸= 0), reducing the problem
to solving the first-order linear ODE:

r′(x) +B(x)r(x) + A2(x)c = 0,

to check when the function w(x) = c r(x) is a valid periodic solution to the differential
equation

w′ = A2(x)w
2 +B(x)w,

the following conditions must hold

1. r′(x) +B(x) r(x) + A2(x) c = 0,

2. r(x) ̸= 0 for all x ∈ [0, 1],
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3. r(0) = r(1).

Verification:
Plugging w = c r into the differential equation gives:

w′ = c r′ = A2(x) c
2 r2 +B(x) c r,

rewriting this as,
c r′ = −A2(x) c

2 r2 −B(x) c r,

and dividing both sides by c r2 (which is valid since r(x) ̸= 0) yields:

− r′

r2
= A2(x) c+

B(x)

r
,

multiplying back by r2 and simplifying,

−c r′ = A2(x) c
2 r2 +B(x) c r,

which confirms that the equation holds when the condition r′(x)+B(x) r(x)+A2(x) c = 0
is satisfied,

going the other way, if r satisfies all three conditions, then

w′ = c r′ = −c(B r + A2 c) = A2w
2 +B w,

and periodicity of w follows since r(0) = r(1) and w = c r.

Periodic solutions exist when:
r′ +B r + A2 c = 0,

r(x) ̸= 0 for all x ∈ [0, 1],

r(0) = r(1).

The next part the Proof of Theorem 1 assume two distinct rational limit cycle
solutions exist

w1(x) =
1

r1(x)
, (3.4)

and
w2(x) =

1

r2(x)
. (3.5)

. Substituting into equation, we obtain the pair of differential equations

r′1(x) +B(x)r1(x) + A2(x) = 0, r′2(x) +B(x)r2(x) + A2(x) = 0,

subtracting these equations yields,

(r′1(x)− r′2(x)) +B(x)(r1(x)− r2(x)) = 0,

this is a first-order linear differential equation for the difference ∆r(x) = r1(x) − r2(x),
whose general solution is:

∆r(x) = K exp

(
−
∫

B(x) dx

)
,
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for some constant K ∈ R.
The periodic boundary conditions r1(0) = r1(1) and r2(0) = r2(1) imply

∆r(0) = ∆r(1) ⇒ K = K exp

(
−
∫ 1

0

B(x) dx

)
,

this equality holds only if either

B(x) ≡ 0, or K = 0.

If B(x) ≡ 0, then ∆r(x) = K is constant However, periodicity again gives:

r1(0)− r2(0) = r1(1)− r2(1) ⇒ K = K,

which is always true. Yet, since r1(x) ̸≡ r2(x) by assumption, the only consistent pos-
sibility is K = 0. Therefore, r1(x) ≡ r2(x), contradicting the assumption of distinct
solutions.

In the case where B(x) ≡ 0, the original equations reduce to

r′1(x) = −A2(x), r′2(x) = −A2(x),

implying r1(x) − r2(x) = constant. Again, periodicity forces this constant to vanish, so
r1(x) ≡ r2(x). Recall that B(x) = A1(x) + 2A2(x)y0(x). If B(x) ≡ 0, then

A1(x) = −2A2(x)y0(x),

using the relation r′1(x) = −A2(x), this gives

A1(x) = 2r′1(x)y0(x).

If y0(x) = q0(x)
p0(x)

, a rational function, we obtain the explicit expressions

A2(x) = −r′1(x), A1(x) =
2r′1(x)q0(x)

p0(x)
.

The condition r1(x) ̸= 0 on [0, 1] ensures that w1(x) =
1

r1(x)
is regular on this interval,

while the boundary condition r1(0) = r1(1) ensures that w1(x) is periodic and hence a
genuine limit cycle.

This complete derivation shows that any two rational limit cycle solutions must be identi-
cal, since their difference vanishes identically under the imposed conditions. Furthermore,
the coefficient functions A1(x) and A2(x) are uniquely determined by the rational solution
r1(x) and the particular solution y0(x), leaving no flexibility for the existence of distinct
rational limit cycles. This uniqueness result is critical in the classification of rational
periodic solutions to Riccati-type differential systems.

Assume two distinct periodic solutions w1(x) =
1

r1(x)
and w2(x) =

1
r2(x)

exist for the
system,

w′ = A2(x)w
2 +B(x)w,

substituting into the differential equation yields,

r′1(x) +B(x)r1(x) + A2(x) = 0,

r′2(x) +B(x)r2(x) + A2(x) = 0,
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subtracting these equations gives the linear ODE:

(r′1(x)− r′2(x)) +B(x)(r1(x)− r2(x)) = 0,

with general solution,
r1(x)− r2(x) = Ke−

∫
B(x) dx,

periodic boundary conditions r1(0) = r1(1) and r2(0) = r2(1) require

Ke−
∫ 1
0 B(x) dx = K.

This holds only when either B(x) ≡ 0 or K = 0. In the case B(x) ≡ 0, the equation
reduces to r1(x) = r2(x) + C, but periodicity enforces C = 0, so r1 ≡ r2. Thus, solution
uniqueness is established,

the coefficients must satisfy
A2(x) = −r′1(x),

B(x) = A1(x) + 2A2(x)y0(x) = 0,

which gives

A1(x) = −2A2(x)y0(x) = 2r′1(x)
q0(x)

p0(x)
.

For polynomial consistency, we require that r′1(x) factors as:

r′1(x) = T (x)p0(x),

making the coefficients

A2(x) = −T (x)p0(x), A1(x) = 2T (x)q0(x),

any additional solution of the form w2 =
1

r1+α
would require

r′1(x)

r1(x) + α
= T (x),

but since r′1(x) = T (x)p0(x), this expression cannot be rational unless α = 0. Thus, no
additional distinct rational limit cycles can exist.

The non-vanishing condition r1(x) ̸= 0 on the interval [0, 1] and r′1(x) ̸= 0 ensures the
solution w1(x) = 1/r1(x) is regular. The periodicity condition r1(0) = r1(1) guarantees
the limit cycle property.

This complete derivation proves the system admits at most one non-trivial rational
limit cycle solution under the given constraints.

Given the Riccati equation

w′ = A2(x)w
2 +B(x)w,

we consider rational solutions of the form

w(x) =
1

r(x)
,

substitution yields the linear equation

r′(x) +B(x)r(x) + A2(x) = 0.
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For a particular solution y0(x) =
q0(x)
p0(x)

, we establish the expression for B(x) using the
identity

B(x) = A1(x) + 2A2(x)y0(x),

assuming r′(x) = T (x)p0(x), the coefficient functions become

A2(x) = −T (x)p0(x), A1(x) = 2T (x)q0(x),

the consistency condition for A0(x) requires

p0(x) |
[
q′0(x)p0(x)− q0(x)p

′
0(x)− T (x)q0(x)

2
]
,

since gcd(q0, p0) = 1, the divisibility condition implies

p0(x) | p′0(x),

which holds only when p0(x) is constant.

Consider a hypothetical second solution of the form

1

r(x) + α
.

This would imply

r′(x)

r(x) + α
= T (x) ⇒ r(x) + α =

r′(x)

T (x)
= p0(x),

so we require:
p0(x) | r(x) + α,

which is impossible for arbitrary α, unless p0(x) is constant and α = 0. Thus, the solution
is unique.

3.2.4 Example of Application

Consider the Riccati equation

dy

dx
= (2− 4x)y2 + (4x− 2)y.

Let y0(x) = 1. Substituting into the differential equation

(2− 4x)(1)2 + (4x− 2)(1) = 2− 4x+ 4x− 2 = 0,

hence, y0(x) = 1 is indeed a particular solution.
Set w(x) = 1

r(x)
, so that the Riccati equation becomes

w′ = (2− 4x)w2 + (4x− 2)w,

substituting w = 1
r

and computing w′ gives

− r′

r2
= (2− 4x)

(
1

r2

)
+ (4x− 2)

(
1

r

)
,
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multiply both sides by r2

−r′ = (2− 4x)(1) + (4x− 2)r,

thus, we obtain the linear ODE:

r′(x) + (4x− 2)r(x) = −(2− 4x),

let the integrating factor be

µ(x) = exp

(∫
(4x− 2) dx

)
= e2x

2−2x,

then,

r(x) = e−2x2+2x

(
C −

∫
(2− 4x)e2x

2−2xdx

)
,

let us choose a solution directly

r(x) = e−2x2+2x + 1,

evaluate at the endpoints

r(0) = e0 + 1 = 2, r(1) = e0 + 1 = 2.

So, r(0) = r(1), satisfying periodicity
since e−2x2+2x > 0 for all x ∈ [0, 1], we have

r(x) > 0 ∀x ∈ [0, 1],

ensuring no poles in w(x) or y(x).
The rational solution is:

y(x) =
1

r(x)
=

1

e−2x2+2x + 1
,

let us verify

y′ =
(2− 4x)e−2x2+2x

(e−2x2+2x + 1)2
,

and compare with the right-hand side of the original Riccati equation

(2− 4x)y2 + (4x− 2)y = (2− 4x)

(
1

e−2x2+2x + 1

)2

+ (4x− 2)

(
1

e−2x2+2x + 1

)
,

which simplifies to the same expression as y′, confirming that the solution is correct.
The Riccati equation

dy

dx
= (2− 4x)y2 + (4x− 2)y,

admits a rational, periodic, and non-vanishing solution:

y(x) =
1

e−2x2+2x + 1
,
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with a particular solution y0(x) = 1, and satisfies all required conditions for a rational
limit cycle.

Figure 3.1: Phase Portrait with Limit Cycle
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4 Conclusion

In this memoire , we have studied the rational limit cycles associated with two important
classes of differential equations: Bernoulli equations and Riccati equations, focusing on
cases where the coefficients are real polynomials. After presenting the necessary theo-
retical background, we examined key recent results in this area, particularly those found
in the work of [44], which established sharp upper bounds for the number of possible
rational limit cycles in these equations, work showed that Bernoulli equations can have
at most two rational limit cycles when the exponent n is odd, and at most one when n is
even. In the case of Riccati equations, it was proven that they can admit no more than
two rational limit cycles. These results were further illustrated by concrete examples that
demonstrate the optimality of the bounds. The significance of these findings lies not only
in their theoretical contribution but also in their potential applications for understanding
the periodic behavior of dynamical systems, particularly those modeled by differential
equations that admit rational solutions. we hope that this work contributes to a deeper
understanding of the structure of rational periodic solutions for Bernoulli and Riccati
equations and serves as a foundation for future research aiming to extend this analysis
to other types of equations or to explore the stability and dynamics associated with such
solutions.

Technical Note

All graphs and illustrative plots presented in this thesis were generated using Wolfram
Mathematica. The software was chosen for its precision and effectiveness in visualizing
numerical solutions and analyzing the qualitative behavior of differential systems.
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